Matches in SemOpenAlex for { <https://semopenalex.org/work/W2394544944> ?p ?o ?g. }
- W2394544944 endingPage "19" @default.
- W2394544944 startingPage "1" @default.
- W2394544944 abstract "Data clustering is a key field of research in the pattern recognition arena. Although clustering is an unsupervised learning technique, numerous efforts have been made in both hard and soft clustering. In hard clustering, K-means is the most popular method and is being used in diversified application areas. In this paper, an effort has been made with a recently developed population based metaheuristic called Elitist based teaching learning based optimization (ETLBO) for data clustering. The ETLBO has been hybridized with K-means algorithm (ETLBO-K-means) to get the optimal cluster centers and effective fitness values. The performance of the proposed method has been compared with other techniques by considering standard benchmark real life datasets as well as some synthetic datasets. Simulation and comparison results demonstrate the effectiveness and efficiency of the proposed method." @default.
- W2394544944 created "2016-06-24" @default.
- W2394544944 creator A5044832580 @default.
- W2394544944 creator A5049607826 @default.
- W2394544944 creator A5078422400 @default.
- W2394544944 creator A5084502652 @default.
- W2394544944 date "2016-01-01" @default.
- W2394544944 modified "2023-09-25" @default.
- W2394544944 title "Hybrid Clustering using Elitist Teaching Learning-Based Optimization" @default.
- W2394544944 cites W1026957800 @default.
- W2394544944 cites W1032578026 @default.
- W2394544944 cites W1068406362 @default.
- W2394544944 cites W1134269085 @default.
- W2394544944 cites W1175767220 @default.
- W2394544944 cites W1210381405 @default.
- W2394544944 cites W1520440889 @default.
- W2394544944 cites W1564318065 @default.
- W2394544944 cites W1604081952 @default.
- W2394544944 cites W165199097 @default.
- W2394544944 cites W1900016956 @default.
- W2394544944 cites W1964471468 @default.
- W2394544944 cites W1972042636 @default.
- W2394544944 cites W1973597670 @default.
- W2394544944 cites W1976725479 @default.
- W2394544944 cites W1980737545 @default.
- W2394544944 cites W1985059878 @default.
- W2394544944 cites W1987791066 @default.
- W2394544944 cites W1991646645 @default.
- W2394544944 cites W1992419399 @default.
- W2394544944 cites W1993871655 @default.
- W2394544944 cites W1998569590 @default.
- W2394544944 cites W1999284878 @default.
- W2394544944 cites W2010873252 @default.
- W2394544944 cites W2012258043 @default.
- W2394544944 cites W2013203042 @default.
- W2394544944 cites W2021490042 @default.
- W2394544944 cites W2031001582 @default.
- W2394544944 cites W2032147623 @default.
- W2394544944 cites W2032230795 @default.
- W2394544944 cites W2033641377 @default.
- W2394544944 cites W2039098211 @default.
- W2394544944 cites W2040465587 @default.
- W2394544944 cites W2044355052 @default.
- W2394544944 cites W2048612196 @default.
- W2394544944 cites W2049089350 @default.
- W2394544944 cites W2053074949 @default.
- W2394544944 cites W2056203337 @default.
- W2394544944 cites W2057279785 @default.
- W2394544944 cites W2060207914 @default.
- W2394544944 cites W2061382789 @default.
- W2394544944 cites W206482245 @default.
- W2394544944 cites W2066650517 @default.
- W2394544944 cites W2077385821 @default.
- W2394544944 cites W2078669430 @default.
- W2394544944 cites W2082888448 @default.
- W2394544944 cites W2084881246 @default.
- W2394544944 cites W2085593730 @default.
- W2394544944 cites W2094340389 @default.
- W2394544944 cites W2095155772 @default.
- W2394544944 cites W2095188658 @default.
- W2394544944 cites W2107303832 @default.
- W2394544944 cites W2107763795 @default.
- W2394544944 cites W2115381060 @default.
- W2394544944 cites W2120529703 @default.
- W2394544944 cites W2125948619 @default.
- W2394544944 cites W2127688872 @default.
- W2394544944 cites W2134024155 @default.
- W2394544944 cites W2143083947 @default.
- W2394544944 cites W2169434152 @default.
- W2394544944 cites W2184591004 @default.
- W2394544944 cites W2242607870 @default.
- W2394544944 cites W2258321281 @default.
- W2394544944 cites W2264043868 @default.
- W2394544944 cites W2339853937 @default.
- W2394544944 cites W2341146496 @default.
- W2394544944 cites W2341661152 @default.
- W2394544944 cites W2405683469 @default.
- W2394544944 cites W2604270349 @default.
- W2394544944 cites W3120740533 @default.
- W2394544944 cites W344332938 @default.
- W2394544944 cites W69482398 @default.
- W2394544944 cites W981913959 @default.
- W2394544944 cites W2593715762 @default.
- W2394544944 doi "https://doi.org/10.4018/ijrsda.2016010101" @default.
- W2394544944 hasPublicationYear "2016" @default.
- W2394544944 type Work @default.
- W2394544944 sameAs 2394544944 @default.
- W2394544944 citedByCount "30" @default.
- W2394544944 countsByYear W23945449442016 @default.
- W2394544944 countsByYear W23945449442017 @default.
- W2394544944 countsByYear W23945449442018 @default.
- W2394544944 countsByYear W23945449442019 @default.
- W2394544944 countsByYear W23945449442020 @default.
- W2394544944 countsByYear W23945449442021 @default.
- W2394544944 countsByYear W23945449442022 @default.
- W2394544944 crossrefType "journal-article" @default.
- W2394544944 hasAuthorship W2394544944A5044832580 @default.
- W2394544944 hasAuthorship W2394544944A5049607826 @default.