Matches in SemOpenAlex for { <https://semopenalex.org/work/W2394916924> ?p ?o ?g. }
- W2394916924 endingPage "426" @default.
- W2394916924 startingPage "426" @default.
- W2394916924 abstract "Image registration is an essential step in the process of image fusion, environment surveillance and change detection. Finding correct feature matches during the registration process proves to be difficult, especially for remote sensing images with large background variations (e.g., images taken pre and post an earthquake or flood). Traditional registration methods based on local intensity probably cannot maintain steady performances, as differences are significant in the same area of the corresponding images, and ground control points are not always available in many disaster images. In this paper, an automatic image registration method based on the line segments on the main shape contours (e.g., coastal lines, long roads and mountain ridges) is proposed for remote sensing images with large background variations because the main shape contours can hold relatively more invariant information. First, a line segment detector called EDLines (Edge Drawing Lines), which was proposed by Akinlar et al. in 2011, is used to extract line segments from two corresponding images, and a line validation step is performed to remove meaningless and fragmented line segments. Then, a novel line segment descriptor with a new histogram binning strategy, which is robust to global geometrical distortions, is generated for each line segment based on the geometrical relationships,including both the locations and orientations of theremaining line segments relative to it. As a result of the invariance of the main shape contours, correct line segment matches will have similar descriptors and can be obtained by cross-matching among the descriptors. Finally, a spatial consistency measure is used to remove incorrect matches, and transformation parameters between the reference and sensed images can be figured out. Experiments with images from different types of satellite datasets, such as Landsat7, QuickBird, WorldView, and so on, demonstrate that the proposed algorithm is automatic, fast (4 ms faster than the second fastest method, i.e., the rotation- and scale-invariant shape context) and can achieve a recall of 79.7%, a precision of 89.1% and a root mean square error (RMSE) of 1.0 pixels on average for remote sensing images with large background variations." @default.
- W2394916924 created "2016-06-24" @default.
- W2394916924 creator A5058735552 @default.
- W2394916924 creator A5079667048 @default.
- W2394916924 date "2016-05-19" @default.
- W2394916924 modified "2023-09-23" @default.
- W2394916924 title "Automatic Registration Method for Optical Remote Sensing Images with Large Background Variations Using Line Segments" @default.
- W2394916924 cites W1561797649 @default.
- W2394916924 cites W1822893402 @default.
- W2394916924 cites W1972731536 @default.
- W2394916924 cites W1974880733 @default.
- W2394916924 cites W1983807952 @default.
- W2394916924 cites W1993929638 @default.
- W2394916924 cites W2000789130 @default.
- W2394916924 cites W2003084452 @default.
- W2394916924 cites W2008849352 @default.
- W2394916924 cites W2019812651 @default.
- W2394916924 cites W2021278996 @default.
- W2394916924 cites W2023019938 @default.
- W2394916924 cites W2026932150 @default.
- W2394916924 cites W2028600360 @default.
- W2394916924 cites W2032017252 @default.
- W2394916924 cites W2034095824 @default.
- W2394916924 cites W2034872721 @default.
- W2394916924 cites W2041426196 @default.
- W2394916924 cites W2047243114 @default.
- W2394916924 cites W2050436472 @default.
- W2394916924 cites W2051164597 @default.
- W2394916924 cites W2052094314 @default.
- W2394916924 cites W2053430949 @default.
- W2394916924 cites W2057175746 @default.
- W2394916924 cites W2058832287 @default.
- W2394916924 cites W2077388752 @default.
- W2394916924 cites W2079700955 @default.
- W2394916924 cites W2081346862 @default.
- W2394916924 cites W2085851460 @default.
- W2394916924 cites W2090387976 @default.
- W2394916924 cites W2091546400 @default.
- W2394916924 cites W2115072079 @default.
- W2394916924 cites W2118631462 @default.
- W2394916924 cites W2119605622 @default.
- W2394916924 cites W2129708993 @default.
- W2394916924 cites W2134845649 @default.
- W2394916924 cites W2140948804 @default.
- W2394916924 cites W2147555557 @default.
- W2394916924 cites W2150355785 @default.
- W2394916924 cites W2151103935 @default.
- W2394916924 cites W2155598194 @default.
- W2394916924 cites W2177274842 @default.
- W2394916924 cites W2913455019 @default.
- W2394916924 doi "https://doi.org/10.3390/rs8050426" @default.
- W2394916924 hasPublicationYear "2016" @default.
- W2394916924 type Work @default.
- W2394916924 sameAs 2394916924 @default.
- W2394916924 citedByCount "19" @default.
- W2394916924 countsByYear W23949169242017 @default.
- W2394916924 countsByYear W23949169242018 @default.
- W2394916924 countsByYear W23949169242019 @default.
- W2394916924 countsByYear W23949169242020 @default.
- W2394916924 countsByYear W23949169242021 @default.
- W2394916924 countsByYear W23949169242022 @default.
- W2394916924 crossrefType "journal-article" @default.
- W2394916924 hasAuthorship W2394916924A5058735552 @default.
- W2394916924 hasAuthorship W2394916924A5079667048 @default.
- W2394916924 hasBestOaLocation W23949169241 @default.
- W2394916924 hasConcept C111919701 @default.
- W2394916924 hasConcept C115961682 @default.
- W2394916924 hasConcept C138885662 @default.
- W2394916924 hasConcept C153180895 @default.
- W2394916924 hasConcept C154945302 @default.
- W2394916924 hasConcept C166704113 @default.
- W2394916924 hasConcept C182124507 @default.
- W2394916924 hasConcept C198352243 @default.
- W2394916924 hasConcept C205649164 @default.
- W2394916924 hasConcept C2524010 @default.
- W2394916924 hasConcept C2776401178 @default.
- W2394916924 hasConcept C2776436953 @default.
- W2394916924 hasConcept C31972630 @default.
- W2394916924 hasConcept C33923547 @default.
- W2394916924 hasConcept C41008148 @default.
- W2394916924 hasConcept C41895202 @default.
- W2394916924 hasConcept C53533937 @default.
- W2394916924 hasConcept C62649853 @default.
- W2394916924 hasConcept C98045186 @default.
- W2394916924 hasConceptScore W2394916924C111919701 @default.
- W2394916924 hasConceptScore W2394916924C115961682 @default.
- W2394916924 hasConceptScore W2394916924C138885662 @default.
- W2394916924 hasConceptScore W2394916924C153180895 @default.
- W2394916924 hasConceptScore W2394916924C154945302 @default.
- W2394916924 hasConceptScore W2394916924C166704113 @default.
- W2394916924 hasConceptScore W2394916924C182124507 @default.
- W2394916924 hasConceptScore W2394916924C198352243 @default.
- W2394916924 hasConceptScore W2394916924C205649164 @default.
- W2394916924 hasConceptScore W2394916924C2524010 @default.
- W2394916924 hasConceptScore W2394916924C2776401178 @default.
- W2394916924 hasConceptScore W2394916924C2776436953 @default.
- W2394916924 hasConceptScore W2394916924C31972630 @default.
- W2394916924 hasConceptScore W2394916924C33923547 @default.