Matches in SemOpenAlex for { <https://semopenalex.org/work/W2395162078> ?p ?o ?g. }
- W2395162078 abstract "We develop a generalized theoretical framework on the binding of transcription factor proteins (TFs) with specific sites on DNA that takes into account the interplay of various factors regarding overall electrostatic potential at the DNA–protein interface, occurrence of kinetic traps along the DNA sequence, presence of other roadblock protein molecules along DNA and crowded environment, conformational fluctuations in the DNA binding domains (DBDs) of TFs, and the conformational state of the DNA. Starting from a Smolochowski type theoretical framework on site-specific binding of TFs we logically build our model by adding the effects of these factors one by one. Our generalized two-step model suggests that the electrostatic attractive forces present inbetween the positively charged DBDs of TFs and the negatively charged phosphate backbone of DNA, along with the counteracting shielding effects of solvent ions, is the core factor that creates a fluidic type environment at the DNA–protein interface. This in turn facilitates various one-dimensional diffusion (1Dd) processes such as sliding, hopping and intersegmental transfers. These facilitating processes as well as flipping dynamics of conformational states of DBDs of TFs between stationary and mobile states can enhance the 1Dd coefficient on a par with three-dimensional diffusion (3Dd). The random coil conformation of DNA also plays critical roles in enhancing the site-specific association rate. The extent of enhancement over the 3Dd controlled rate seems to be directly proportional to the maximum possible 1Dd length. We show that the overall site-specific binding rate scales with the length of DNA in an asymptotic way. For relaxed DNA, the specific binding rate will be independent of the length of DNA as length increases towards infinity. For condensed DNA as in in vivo conditions, the specific binding rate depends on the length of DNA in a turnover way with a maximum. This maximum rate seems to scale with the maximum possible 1Dd length of TFs in a square root manner. Results suggest that 1Dd processes contribute much less to the enhancement of specific binding rate under in vivo conditions for condensed DNA. There exists a critical length of binding stretch of TFs beyond which the probability associated with the random occurrence of similar specific binding sites will be close to zero. TFs in natural systems from prokaryotes to eukaryotes seem to handle sequence-mediated kinetic traps via increasing the length of their recognition stretch or combinatorial binding. TFs overcome the hurdles of roadblocks via switching efficiently between sliding, hopping and intersegmental transfer modes. The site-specific binding rate as well as the maximum possible 1Dd length seem to be directly proportional to the square root of the probability (p R) of finding a nonspecific binding site to be free from dynamic roadblocks. Here p R seems to be a function of the number of nsbs available per DNA binding protein () inside the living cell. It seems that p R > 0.8 when > 10 which is true for the Escherichia coli cell system." @default.
- W2395162078 created "2016-06-24" @default.
- W2395162078 creator A5055912929 @default.
- W2395162078 creator A5077230491 @default.
- W2395162078 date "2016-05-26" @default.
- W2395162078 modified "2023-10-01" @default.
- W2395162078 title "Generalized theory on the mechanism of site-specific DNA–protein interactions" @default.
- W2395162078 cites W1557942166 @default.
- W2395162078 cites W1642251103 @default.
- W2395162078 cites W1802488365 @default.
- W2395162078 cites W1969876717 @default.
- W2395162078 cites W1972675000 @default.
- W2395162078 cites W1972676749 @default.
- W2395162078 cites W1979863594 @default.
- W2395162078 cites W1981231268 @default.
- W2395162078 cites W1981333260 @default.
- W2395162078 cites W1984543814 @default.
- W2395162078 cites W1989274555 @default.
- W2395162078 cites W1990507623 @default.
- W2395162078 cites W2003517855 @default.
- W2395162078 cites W2003747142 @default.
- W2395162078 cites W2006653572 @default.
- W2395162078 cites W2007592424 @default.
- W2395162078 cites W2008899998 @default.
- W2395162078 cites W2009599607 @default.
- W2395162078 cites W2015764015 @default.
- W2395162078 cites W2017764675 @default.
- W2395162078 cites W2019424210 @default.
- W2395162078 cites W2020767071 @default.
- W2395162078 cites W2023013684 @default.
- W2395162078 cites W2029738506 @default.
- W2395162078 cites W2031225002 @default.
- W2395162078 cites W2032320431 @default.
- W2395162078 cites W2034191243 @default.
- W2395162078 cites W2036082188 @default.
- W2395162078 cites W2044986547 @default.
- W2395162078 cites W2055579049 @default.
- W2395162078 cites W2063006759 @default.
- W2395162078 cites W2067925445 @default.
- W2395162078 cites W2078636078 @default.
- W2395162078 cites W2080641060 @default.
- W2395162078 cites W2081372660 @default.
- W2395162078 cites W2081910077 @default.
- W2395162078 cites W2082345412 @default.
- W2395162078 cites W2088200354 @default.
- W2395162078 cites W2090214960 @default.
- W2395162078 cites W2092388628 @default.
- W2395162078 cites W2095481462 @default.
- W2395162078 cites W2098296039 @default.
- W2395162078 cites W2100693135 @default.
- W2395162078 cites W2105632084 @default.
- W2395162078 cites W2106689809 @default.
- W2395162078 cites W2110823478 @default.
- W2395162078 cites W2124735489 @default.
- W2395162078 cites W2143920302 @default.
- W2395162078 cites W2143970215 @default.
- W2395162078 cites W2146898033 @default.
- W2395162078 cites W2150123411 @default.
- W2395162078 cites W2150681944 @default.
- W2395162078 cites W2155418451 @default.
- W2395162078 cites W2165591265 @default.
- W2395162078 cites W2166898290 @default.
- W2395162078 cites W2167154952 @default.
- W2395162078 cites W2168087339 @default.
- W2395162078 cites W2168442016 @default.
- W2395162078 cites W2181619938 @default.
- W2395162078 cites W2290486720 @default.
- W2395162078 cites W2318299572 @default.
- W2395162078 cites W2322908631 @default.
- W2395162078 cites W2329440962 @default.
- W2395162078 cites W2420297920 @default.
- W2395162078 cites W4240788980 @default.
- W2395162078 cites W2002998123 @default.
- W2395162078 cites W2047237642 @default.
- W2395162078 doi "https://doi.org/10.1088/1742-5468/2016/05/053501" @default.
- W2395162078 hasPublicationYear "2016" @default.
- W2395162078 type Work @default.
- W2395162078 sameAs 2395162078 @default.
- W2395162078 citedByCount "16" @default.
- W2395162078 countsByYear W23951620782016 @default.
- W2395162078 countsByYear W23951620782017 @default.
- W2395162078 countsByYear W23951620782018 @default.
- W2395162078 countsByYear W23951620782019 @default.
- W2395162078 countsByYear W23951620782020 @default.
- W2395162078 countsByYear W23951620782021 @default.
- W2395162078 countsByYear W23951620782022 @default.
- W2395162078 countsByYear W23951620782023 @default.
- W2395162078 crossrefType "journal-article" @default.
- W2395162078 hasAuthorship W2395162078A5055912929 @default.
- W2395162078 hasAuthorship W2395162078A5077230491 @default.
- W2395162078 hasConcept C104317684 @default.
- W2395162078 hasConcept C107824862 @default.
- W2395162078 hasConcept C117626034 @default.
- W2395162078 hasConcept C121332964 @default.
- W2395162078 hasConcept C12554922 @default.
- W2395162078 hasConcept C147789679 @default.
- W2395162078 hasConcept C159467904 @default.
- W2395162078 hasConcept C185592680 @default.
- W2395162078 hasConcept C205066982 @default.
- W2395162078 hasConcept C41625074 @default.