Matches in SemOpenAlex for { <https://semopenalex.org/work/W2395290719> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2395290719 endingPage "164" @default.
- W2395290719 startingPage "125" @default.
- W2395290719 abstract "An alpha-automaton (for alpha some ordinal) is an automaton similar to a Muller automaton that processes words of length alpha. A structure is called alpha-automatic if it can be presented by alpha-automata (completely analogous to the notion of automatic structures which can be presented by the well-known finite automata). We call a structure ordinal-automatic if it is alpha-automatic for some ordinal alpha. We continue the study of ordinal-automatic structures initiated by Schlicht and Stephan as well as by Finkel and Todorcevic. We develop a pumping lemma for alpha-automata (processing finite alpha-words, i.e., words of length alpha that have one fixed letter at all but finitely many positions). Using this pumping, we provide counterparts for the class of ordinal-automatic structures to several results on automatic structures: Every finite word alpha-automatic structure has an injective finite word alpha-automatic presentation for all alpha < omega(1) + omega(omega). This bound is sharp. We classify completely the finite word omega(n)-automatic Boolean algebras. Moreover, we show that the countable atomless Boolean algebra does not have an injective finite-word ordinal-automatic presentation. We separate the class of finite-word ordinal-automatic structures from that of tree-automatic structures by showing that free term algebras with at least 2 generators (and one binary function) are not ordinal-automatic while the free term algebra with countable infinitely many generators is known to be tree-automatic. For every ordinal alpha < omega(1) + omega(omega), we provide a sharp bound on the height of the finite word alpha-automatic well-founded order forests. For every ordinal alpha < omega(1)+ omega(omega), we provide a structure (sic)(alpha) that is complete for the class of finite-word alpha-automatic structures with respect to first-order interpretations. As a byproduct, we also lift Schlicht and Stephans's characterisation of the injectively finite-word alpha-automatic ordinals to the noninjective setting." @default.
- W2395290719 created "2016-06-24" @default.
- W2395290719 creator A5003413515 @default.
- W2395290719 creator A5010168911 @default.
- W2395290719 creator A5067023674 @default.
- W2395290719 date "2017-03-16" @default.
- W2395290719 modified "2023-09-24" @default.
- W2395290719 title "Pumping for ordinal-automatic structures1" @default.
- W2395290719 cites W1493647335 @default.
- W2395290719 cites W1511995155 @default.
- W2395290719 cites W1517606395 @default.
- W2395290719 cites W1523399120 @default.
- W2395290719 cites W1530071891 @default.
- W2395290719 cites W2025670714 @default.
- W2395290719 cites W2033186040 @default.
- W2395290719 cites W2084168663 @default.
- W2395290719 cites W2089595421 @default.
- W2395290719 cites W2122112120 @default.
- W2395290719 cites W2158441292 @default.
- W2395290719 cites W2962743408 @default.
- W2395290719 cites W3099901893 @default.
- W2395290719 cites W3160002757 @default.
- W2395290719 cites W4230919050 @default.
- W2395290719 cites W4242654370 @default.
- W2395290719 cites W86466951 @default.
- W2395290719 doi "https://doi.org/10.3233/com-160057" @default.
- W2395290719 hasPublicationYear "2017" @default.
- W2395290719 type Work @default.
- W2395290719 sameAs 2395290719 @default.
- W2395290719 citedByCount "3" @default.
- W2395290719 countsByYear W23952907192014 @default.
- W2395290719 countsByYear W23952907192016 @default.
- W2395290719 countsByYear W23952907192022 @default.
- W2395290719 crossrefType "journal-article" @default.
- W2395290719 hasAuthorship W2395290719A5003413515 @default.
- W2395290719 hasAuthorship W2395290719A5010168911 @default.
- W2395290719 hasAuthorship W2395290719A5067023674 @default.
- W2395290719 hasConcept C110729354 @default.
- W2395290719 hasConcept C114614502 @default.
- W2395290719 hasConcept C118615104 @default.
- W2395290719 hasConcept C128107574 @default.
- W2395290719 hasConcept C33923547 @default.
- W2395290719 hasConceptScore W2395290719C110729354 @default.
- W2395290719 hasConceptScore W2395290719C114614502 @default.
- W2395290719 hasConceptScore W2395290719C118615104 @default.
- W2395290719 hasConceptScore W2395290719C128107574 @default.
- W2395290719 hasConceptScore W2395290719C33923547 @default.
- W2395290719 hasIssue "2" @default.
- W2395290719 hasLocation W23952907191 @default.
- W2395290719 hasOpenAccess W2395290719 @default.
- W2395290719 hasPrimaryLocation W23952907191 @default.
- W2395290719 hasRelatedWork W2052388428 @default.
- W2395290719 hasRelatedWork W2525848170 @default.
- W2395290719 hasRelatedWork W2963953154 @default.
- W2395290719 hasRelatedWork W3037784022 @default.
- W2395290719 hasRelatedWork W3047914590 @default.
- W2395290719 hasRelatedWork W3107474891 @default.
- W2395290719 hasRelatedWork W4243466924 @default.
- W2395290719 hasRelatedWork W4246220481 @default.
- W2395290719 hasRelatedWork W4248032484 @default.
- W2395290719 hasRelatedWork W4250590348 @default.
- W2395290719 hasVolume "6" @default.
- W2395290719 isParatext "false" @default.
- W2395290719 isRetracted "false" @default.
- W2395290719 magId "2395290719" @default.
- W2395290719 workType "article" @default.