Matches in SemOpenAlex for { <https://semopenalex.org/work/W239537540> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W239537540 endingPage "486" @default.
- W239537540 startingPage "463" @default.
- W239537540 abstract "In this chapter, a study of deep learning of time-series forecasting techniques is presented. Using Stacked Denoising Auto-Encoders, it is possible to disentangle complex characteristics in time series data. The effects of complete and partial fine-tuning are shown. SDAE prove to be able to train deeper models, and consequently to learn more complex characteristics in the data. Hence, these models are able to generalize better. Pre-trained models show a better generalization when used without covariates. The learned weights show to be sparse, suggesting future exploration and research lines." @default.
- W239537540 created "2016-06-24" @default.
- W239537540 creator A5002395825 @default.
- W239537540 creator A5003560190 @default.
- W239537540 creator A5045935802 @default.
- W239537540 creator A5050362032 @default.
- W239537540 date "2015-01-01" @default.
- W239537540 modified "2023-10-02" @default.
- W239537540 title "Stacked Denoising Auto-Encoders for Short-Term Time Series Forecasting" @default.
- W239537540 cites W1586335931 @default.
- W239537540 cites W1599300385 @default.
- W239537540 cites W16016350 @default.
- W239537540 cites W1613249581 @default.
- W239537540 cites W189843990 @default.
- W239537540 cites W1969482498 @default.
- W239537540 cites W1985453523 @default.
- W239537540 cites W1994197834 @default.
- W239537540 cites W2014928429 @default.
- W239537540 cites W2048608810 @default.
- W239537540 cites W2083974252 @default.
- W239537540 cites W2100495367 @default.
- W239537540 cites W2105464873 @default.
- W239537540 cites W2117130368 @default.
- W239537540 cites W2128076038 @default.
- W239537540 cites W2132782512 @default.
- W239537540 cites W2147800946 @default.
- W239537540 cites W2167088383 @default.
- W239537540 cites W2798056406 @default.
- W239537540 cites W81813850 @default.
- W239537540 doi "https://doi.org/10.1007/978-3-319-09903-3_23" @default.
- W239537540 hasPublicationYear "2015" @default.
- W239537540 type Work @default.
- W239537540 sameAs 239537540 @default.
- W239537540 citedByCount "10" @default.
- W239537540 countsByYear W2395375402017 @default.
- W239537540 countsByYear W2395375402018 @default.
- W239537540 countsByYear W2395375402019 @default.
- W239537540 countsByYear W2395375402020 @default.
- W239537540 countsByYear W2395375402021 @default.
- W239537540 countsByYear W2395375402023 @default.
- W239537540 crossrefType "book-chapter" @default.
- W239537540 hasAuthorship W239537540A5002395825 @default.
- W239537540 hasAuthorship W239537540A5003560190 @default.
- W239537540 hasAuthorship W239537540A5045935802 @default.
- W239537540 hasAuthorship W239537540A5050362032 @default.
- W239537540 hasConcept C111919701 @default.
- W239537540 hasConcept C11413529 @default.
- W239537540 hasConcept C118505674 @default.
- W239537540 hasConcept C119857082 @default.
- W239537540 hasConcept C121332964 @default.
- W239537540 hasConcept C134306372 @default.
- W239537540 hasConcept C143724316 @default.
- W239537540 hasConcept C151406439 @default.
- W239537540 hasConcept C151730666 @default.
- W239537540 hasConcept C153180895 @default.
- W239537540 hasConcept C154945302 @default.
- W239537540 hasConcept C163294075 @default.
- W239537540 hasConcept C177148314 @default.
- W239537540 hasConcept C33923547 @default.
- W239537540 hasConcept C41008148 @default.
- W239537540 hasConcept C61797465 @default.
- W239537540 hasConcept C62520636 @default.
- W239537540 hasConcept C86803240 @default.
- W239537540 hasConceptScore W239537540C111919701 @default.
- W239537540 hasConceptScore W239537540C11413529 @default.
- W239537540 hasConceptScore W239537540C118505674 @default.
- W239537540 hasConceptScore W239537540C119857082 @default.
- W239537540 hasConceptScore W239537540C121332964 @default.
- W239537540 hasConceptScore W239537540C134306372 @default.
- W239537540 hasConceptScore W239537540C143724316 @default.
- W239537540 hasConceptScore W239537540C151406439 @default.
- W239537540 hasConceptScore W239537540C151730666 @default.
- W239537540 hasConceptScore W239537540C153180895 @default.
- W239537540 hasConceptScore W239537540C154945302 @default.
- W239537540 hasConceptScore W239537540C163294075 @default.
- W239537540 hasConceptScore W239537540C177148314 @default.
- W239537540 hasConceptScore W239537540C33923547 @default.
- W239537540 hasConceptScore W239537540C41008148 @default.
- W239537540 hasConceptScore W239537540C61797465 @default.
- W239537540 hasConceptScore W239537540C62520636 @default.
- W239537540 hasConceptScore W239537540C86803240 @default.
- W239537540 hasLocation W2395375401 @default.
- W239537540 hasOpenAccess W239537540 @default.
- W239537540 hasPrimaryLocation W2395375401 @default.
- W239537540 hasRelatedWork W2275988210 @default.
- W239537540 hasRelatedWork W2385621972 @default.
- W239537540 hasRelatedWork W2386131991 @default.
- W239537540 hasRelatedWork W2885094885 @default.
- W239537540 hasRelatedWork W2961085424 @default.
- W239537540 hasRelatedWork W4286629047 @default.
- W239537540 hasRelatedWork W4306321456 @default.
- W239537540 hasRelatedWork W4306674287 @default.
- W239537540 hasRelatedWork W2092619848 @default.
- W239537540 hasRelatedWork W4224009465 @default.
- W239537540 isParatext "false" @default.
- W239537540 isRetracted "false" @default.
- W239537540 magId "239537540" @default.
- W239537540 workType "book-chapter" @default.