Matches in SemOpenAlex for { <https://semopenalex.org/work/W2395376253> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2395376253 abstract "Machine learning algorithms are used to diagnosis for many diseases after very important improvements of classification algorithms as well as having large data sets and high performing computational units. All of these increased the accuracy of these methods. The diagnosis of thyroid gland disorders is one of the application for important classification problem. This study majorly focuses on thyroid gland medical diseases caused by underactive or overactive thyroid glands. The dataset used for the study was taken from UCI repository. Classification of this thyroid disease dataset was a considerable task using decision tree algorithm. The overall prediction accuracy is 100% for training and in range between 98.7% and 99.8% for testing. In this study, we developed the Machine Learning tool for Thyroid Disease Diagnosis (MLTDD), an Intelligent thyroid gland disease prediction tool in Python, which can effectively help to make the right decision, has been designed using PyDev, which is python IDE for Eclipse." @default.
- W2395376253 created "2016-06-24" @default.
- W2395376253 creator A5023284274 @default.
- W2395376253 creator A5071509652 @default.
- W2395376253 date "2016-04-24" @default.
- W2395376253 modified "2023-09-28" @default.
- W2395376253 title "MLTDD : Use of Machine Learning Techniques for Diagnosis of Thyroid Gland Disorder" @default.
- W2395376253 cites W1510933356 @default.
- W2395376253 cites W1584935767 @default.
- W2395376253 cites W2118266232 @default.
- W2395376253 cites W2140190241 @default.
- W2395376253 doi "https://doi.org/10.5121/csit.2016.60507" @default.
- W2395376253 hasPublicationYear "2016" @default.
- W2395376253 type Work @default.
- W2395376253 sameAs 2395376253 @default.
- W2395376253 citedByCount "5" @default.
- W2395376253 countsByYear W23953762532021 @default.
- W2395376253 countsByYear W23953762532022 @default.
- W2395376253 countsByYear W23953762532023 @default.
- W2395376253 crossrefType "proceedings-article" @default.
- W2395376253 hasAuthorship W2395376253A5023284274 @default.
- W2395376253 hasAuthorship W2395376253A5071509652 @default.
- W2395376253 hasBestOaLocation W23953762531 @default.
- W2395376253 hasConcept C119857082 @default.
- W2395376253 hasConcept C134018914 @default.
- W2395376253 hasConcept C154945302 @default.
- W2395376253 hasConcept C2910396726 @default.
- W2395376253 hasConcept C41008148 @default.
- W2395376253 hasConcept C526584372 @default.
- W2395376253 hasConcept C71924100 @default.
- W2395376253 hasConceptScore W2395376253C119857082 @default.
- W2395376253 hasConceptScore W2395376253C134018914 @default.
- W2395376253 hasConceptScore W2395376253C154945302 @default.
- W2395376253 hasConceptScore W2395376253C2910396726 @default.
- W2395376253 hasConceptScore W2395376253C41008148 @default.
- W2395376253 hasConceptScore W2395376253C526584372 @default.
- W2395376253 hasConceptScore W2395376253C71924100 @default.
- W2395376253 hasLocation W23953762531 @default.
- W2395376253 hasOpenAccess W2395376253 @default.
- W2395376253 hasPrimaryLocation W23953762531 @default.
- W2395376253 hasRelatedWork W2748952813 @default.
- W2395376253 hasRelatedWork W2961085424 @default.
- W2395376253 hasRelatedWork W3046775127 @default.
- W2395376253 hasRelatedWork W3170094116 @default.
- W2395376253 hasRelatedWork W4285260836 @default.
- W2395376253 hasRelatedWork W4286629047 @default.
- W2395376253 hasRelatedWork W4306321456 @default.
- W2395376253 hasRelatedWork W4306674287 @default.
- W2395376253 hasRelatedWork W4323060128 @default.
- W2395376253 hasRelatedWork W4224009465 @default.
- W2395376253 isParatext "false" @default.
- W2395376253 isRetracted "false" @default.
- W2395376253 magId "2395376253" @default.
- W2395376253 workType "article" @default.