Matches in SemOpenAlex for { <https://semopenalex.org/work/W2395439732> ?p ?o ?g. }
- W2395439732 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2012 SIAM International Conference on Data Mining (SDM)Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold ModelXinran He, Guojie Song, Wei Chen, and Qingye JiangXinran He, Guojie Song, Wei Chen, and Qingye Jiangpp.463 - 474Chapter DOI:https://doi.org/10.1137/1.9781611972825.40PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract In many real-world situations, different and often opposite opinions, innovations, or products are competing with one another for their social influence in a networked society. In this paper, we study competitive influence propagation in social networks under the competitive linear threshold (CLT) model, an extension to the classic linear threshold model. Under the CLT model, we focus on the problem that one entity tries to block the influence propagation of its competing entity as much as possible by strategically selecting a number of seed nodes that could initiate its own influence propagation. We call this problem the influence blocking maximization (IBM) problem. We prove that the objective function of IBM in the CLT model is submodular, and thus a greedy algorithm could achieve 1 — 1/e approximation ratio. However, the greedy algorithm requires Monte-Carlo simulations of competitive influence propagation, which makes the algorithm not efficient. We design an efficient algorithm CLDAG, which utilizes the properties of the CLT model, to address this issue. We conduct extensive simulations of CLDAG, the greedy algorithm, and other baseline algorithms on real-world and synthetic datasets. Our results show that CLDAG is able to provide best accuracy in par with the greedy algorithm and often better than other algorithms, while it is two orders of magnitude faster than the greedy algorithm. Previous chapter Next chapter RelatedDetails Published:2012ISBN:978-1-61197-232-0eISBN:978-1-61197-282-5 https://doi.org/10.1137/1.9781611972825Book Series Name:ProceedingsBook Code:PRDT12Book Pages:1-1150Key words:influence blocking maximization, competitive linear threshold model, social networks" @default.
- W2395439732 created "2016-06-24" @default.
- W2395439732 creator A5010444015 @default.
- W2395439732 creator A5017541508 @default.
- W2395439732 creator A5056579517 @default.
- W2395439732 creator A5088976879 @default.
- W2395439732 date "2012-04-26" @default.
- W2395439732 modified "2023-10-14" @default.
- W2395439732 title "Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model" @default.
- W2395439732 cites W1502487903 @default.
- W2395439732 cites W1512602432 @default.
- W2395439732 cites W1543143196 @default.
- W2395439732 cites W1564025607 @default.
- W2395439732 cites W1567923358 @default.
- W2395439732 cites W1654194294 @default.
- W2395439732 cites W1680189815 @default.
- W2395439732 cites W1944367023 @default.
- W2395439732 cites W1971842701 @default.
- W2395439732 cites W1972178529 @default.
- W2395439732 cites W1984069252 @default.
- W2395439732 cites W2040938924 @default.
- W2395439732 cites W2041157860 @default.
- W2395439732 cites W2056609785 @default.
- W2395439732 cites W2061820396 @default.
- W2395439732 cites W2108278206 @default.
- W2395439732 cites W2108858998 @default.
- W2395439732 cites W2139297408 @default.
- W2395439732 cites W2140426283 @default.
- W2395439732 cites W2141403143 @default.
- W2395439732 cites W2158478952 @default.
- W2395439732 cites W2187996512 @default.
- W2395439732 doi "https://doi.org/10.1137/1.9781611972825.40" @default.
- W2395439732 hasPublicationYear "2012" @default.
- W2395439732 type Work @default.
- W2395439732 sameAs 2395439732 @default.
- W2395439732 citedByCount "283" @default.
- W2395439732 countsByYear W23954397322012 @default.
- W2395439732 countsByYear W23954397322013 @default.
- W2395439732 countsByYear W23954397322014 @default.
- W2395439732 countsByYear W23954397322015 @default.
- W2395439732 countsByYear W23954397322016 @default.
- W2395439732 countsByYear W23954397322017 @default.
- W2395439732 countsByYear W23954397322018 @default.
- W2395439732 countsByYear W23954397322019 @default.
- W2395439732 countsByYear W23954397322020 @default.
- W2395439732 countsByYear W23954397322021 @default.
- W2395439732 countsByYear W23954397322022 @default.
- W2395439732 countsByYear W23954397322023 @default.
- W2395439732 crossrefType "proceedings-article" @default.
- W2395439732 hasAuthorship W2395439732A5010444015 @default.
- W2395439732 hasAuthorship W2395439732A5017541508 @default.
- W2395439732 hasAuthorship W2395439732A5056579517 @default.
- W2395439732 hasAuthorship W2395439732A5088976879 @default.
- W2395439732 hasConcept C102408133 @default.
- W2395439732 hasConcept C11413529 @default.
- W2395439732 hasConcept C126255220 @default.
- W2395439732 hasConcept C134306372 @default.
- W2395439732 hasConcept C14036430 @default.
- W2395439732 hasConcept C144745244 @default.
- W2395439732 hasConcept C148764684 @default.
- W2395439732 hasConcept C151730666 @default.
- W2395439732 hasConcept C171250308 @default.
- W2395439732 hasConcept C178621042 @default.
- W2395439732 hasConcept C192562407 @default.
- W2395439732 hasConcept C2524010 @default.
- W2395439732 hasConcept C2776085556 @default.
- W2395439732 hasConcept C2776330181 @default.
- W2395439732 hasConcept C2777210771 @default.
- W2395439732 hasConcept C31258907 @default.
- W2395439732 hasConcept C33923547 @default.
- W2395439732 hasConcept C41008148 @default.
- W2395439732 hasConcept C51823790 @default.
- W2395439732 hasConcept C70388272 @default.
- W2395439732 hasConcept C77553402 @default.
- W2395439732 hasConcept C78458016 @default.
- W2395439732 hasConcept C80444323 @default.
- W2395439732 hasConcept C86803240 @default.
- W2395439732 hasConceptScore W2395439732C102408133 @default.
- W2395439732 hasConceptScore W2395439732C11413529 @default.
- W2395439732 hasConceptScore W2395439732C126255220 @default.
- W2395439732 hasConceptScore W2395439732C134306372 @default.
- W2395439732 hasConceptScore W2395439732C14036430 @default.
- W2395439732 hasConceptScore W2395439732C144745244 @default.
- W2395439732 hasConceptScore W2395439732C148764684 @default.
- W2395439732 hasConceptScore W2395439732C151730666 @default.
- W2395439732 hasConceptScore W2395439732C171250308 @default.
- W2395439732 hasConceptScore W2395439732C178621042 @default.
- W2395439732 hasConceptScore W2395439732C192562407 @default.
- W2395439732 hasConceptScore W2395439732C2524010 @default.
- W2395439732 hasConceptScore W2395439732C2776085556 @default.
- W2395439732 hasConceptScore W2395439732C2776330181 @default.
- W2395439732 hasConceptScore W2395439732C2777210771 @default.
- W2395439732 hasConceptScore W2395439732C31258907 @default.
- W2395439732 hasConceptScore W2395439732C33923547 @default.
- W2395439732 hasConceptScore W2395439732C41008148 @default.
- W2395439732 hasConceptScore W2395439732C51823790 @default.
- W2395439732 hasConceptScore W2395439732C70388272 @default.
- W2395439732 hasConceptScore W2395439732C77553402 @default.
- W2395439732 hasConceptScore W2395439732C78458016 @default.
- W2395439732 hasConceptScore W2395439732C80444323 @default.