Matches in SemOpenAlex for { <https://semopenalex.org/work/W2395653583> ?p ?o ?g. }
- W2395653583 endingPage "47" @default.
- W2395653583 startingPage "32" @default.
- W2395653583 abstract "We undertake a detailed numerical investigation to understand how the addition of white and colored noise to a chaotic time series changes the topology and the structure of the underlying attractor reconstructed from the time series. We use the methods and measures of recurrence plot and recurrence network generated from the time series for this analysis. We explicitly show that the addition of noise obscures the property of recurrence of trajectory points in the phase space which is the hallmark of every dynamical system. However, the structure of the attractor is found to be robust even upto high noise levels of 50%. An advantage of recurrence network measures over the conventional nonlinear measures is that they can be applied on short and non stationary time series data. By using the results obtained from the above analysis, we go on to analyse the light curves from a dominant black hole system and show that the recurrence network measures are capable of identifying the nature of noise contamination in a time series." @default.
- W2395653583 created "2016-06-24" @default.
- W2395653583 creator A5006851660 @default.
- W2395653583 creator A5045424120 @default.
- W2395653583 creator A5064744020 @default.
- W2395653583 creator A5066351855 @default.
- W2395653583 date "2016-12-01" @default.
- W2395653583 modified "2023-09-27" @default.
- W2395653583 title "Characterization of chaotic attractors under noise: A recurrence network perspective" @default.
- W2395653583 cites W1981510969 @default.
- W2395653583 cites W1985978480 @default.
- W2395653583 cites W2001994500 @default.
- W2395653583 cites W2009161336 @default.
- W2395653583 cites W2009578574 @default.
- W2395653583 cites W2010821195 @default.
- W2395653583 cites W2019627326 @default.
- W2395653583 cites W2020855173 @default.
- W2395653583 cites W2022214766 @default.
- W2395653583 cites W2028620594 @default.
- W2395653583 cites W2029401646 @default.
- W2395653583 cites W2055084071 @default.
- W2395653583 cites W2070722739 @default.
- W2395653583 cites W2078944484 @default.
- W2395653583 cites W2080497157 @default.
- W2395653583 cites W2081681829 @default.
- W2395653583 cites W2083548182 @default.
- W2395653583 cites W2085009317 @default.
- W2395653583 cites W2089814141 @default.
- W2395653583 cites W2091971192 @default.
- W2395653583 cites W2093446113 @default.
- W2395653583 cites W2097054122 @default.
- W2395653583 cites W2099593264 @default.
- W2395653583 cites W2109713924 @default.
- W2395653583 cites W2113944951 @default.
- W2395653583 cites W2117371822 @default.
- W2395653583 cites W2124637492 @default.
- W2395653583 cites W2131317706 @default.
- W2395653583 cites W2155402574 @default.
- W2395653583 cites W3099377354 @default.
- W2395653583 cites W3106395512 @default.
- W2395653583 cites W3122507959 @default.
- W2395653583 doi "https://doi.org/10.1016/j.cnsns.2016.04.028" @default.
- W2395653583 hasPublicationYear "2016" @default.
- W2395653583 type Work @default.
- W2395653583 sameAs 2395653583 @default.
- W2395653583 citedByCount "22" @default.
- W2395653583 countsByYear W23956535832017 @default.
- W2395653583 countsByYear W23956535832018 @default.
- W2395653583 countsByYear W23956535832019 @default.
- W2395653583 countsByYear W23956535832020 @default.
- W2395653583 countsByYear W23956535832021 @default.
- W2395653583 countsByYear W23956535832022 @default.
- W2395653583 countsByYear W23956535832023 @default.
- W2395653583 crossrefType "journal-article" @default.
- W2395653583 hasAuthorship W2395653583A5006851660 @default.
- W2395653583 hasAuthorship W2395653583A5045424120 @default.
- W2395653583 hasAuthorship W2395653583A5064744020 @default.
- W2395653583 hasAuthorship W2395653583A5066351855 @default.
- W2395653583 hasConcept C105795698 @default.
- W2395653583 hasConcept C112633086 @default.
- W2395653583 hasConcept C114614502 @default.
- W2395653583 hasConcept C114996537 @default.
- W2395653583 hasConcept C115961682 @default.
- W2395653583 hasConcept C121332964 @default.
- W2395653583 hasConcept C121864883 @default.
- W2395653583 hasConcept C134306372 @default.
- W2395653583 hasConcept C143724316 @default.
- W2395653583 hasConcept C151342819 @default.
- W2395653583 hasConcept C151406439 @default.
- W2395653583 hasConcept C151730666 @default.
- W2395653583 hasConcept C154945302 @default.
- W2395653583 hasConcept C158622935 @default.
- W2395653583 hasConcept C164380108 @default.
- W2395653583 hasConcept C173134143 @default.
- W2395653583 hasConcept C184720557 @default.
- W2395653583 hasConcept C2777052490 @default.
- W2395653583 hasConcept C28826006 @default.
- W2395653583 hasConcept C33923547 @default.
- W2395653583 hasConcept C41008148 @default.
- W2395653583 hasConcept C43456602 @default.
- W2395653583 hasConcept C62520636 @default.
- W2395653583 hasConcept C86803240 @default.
- W2395653583 hasConcept C97355855 @default.
- W2395653583 hasConcept C99498987 @default.
- W2395653583 hasConceptScore W2395653583C105795698 @default.
- W2395653583 hasConceptScore W2395653583C112633086 @default.
- W2395653583 hasConceptScore W2395653583C114614502 @default.
- W2395653583 hasConceptScore W2395653583C114996537 @default.
- W2395653583 hasConceptScore W2395653583C115961682 @default.
- W2395653583 hasConceptScore W2395653583C121332964 @default.
- W2395653583 hasConceptScore W2395653583C121864883 @default.
- W2395653583 hasConceptScore W2395653583C134306372 @default.
- W2395653583 hasConceptScore W2395653583C143724316 @default.
- W2395653583 hasConceptScore W2395653583C151342819 @default.
- W2395653583 hasConceptScore W2395653583C151406439 @default.
- W2395653583 hasConceptScore W2395653583C151730666 @default.
- W2395653583 hasConceptScore W2395653583C154945302 @default.
- W2395653583 hasConceptScore W2395653583C158622935 @default.