Matches in SemOpenAlex for { <https://semopenalex.org/work/W2395763878> ?p ?o ?g. }
- W2395763878 endingPage "149" @default.
- W2395763878 startingPage "134" @default.
- W2395763878 abstract "Neighborhood rough set model is considered as one of the effective granular computing models in dealing with numerical data. This model is now widely discussed in feature selection and rule learning. However, there is no theoretical analysis on the issue of neighborhood granularity selection, the influence of sampling resolution, test and misclassification costs on modeling. In this paper, we design an adaptive neighborhood rough set model according to data precision and develop a fast backtracking algorithm for neighborhood rough sets based cost-sensitive feature selection by considering the trade-off between test costs and misclassification costs. In the proposed model, the neighborhood granularity, based on the 3σ rule of statistics, is adaptive to data precision that is described by the multi-level confidence of the feature subsets. Our experiments, thoroughly performed on 12 datasets, demonstrate the effectiveness of the model and the efficiency of the backtracking algorithm." @default.
- W2395763878 created "2016-06-24" @default.
- W2395763878 creator A5013736647 @default.
- W2395763878 creator A5054653936 @default.
- W2395763878 creator A5058078141 @default.
- W2395763878 date "2016-10-01" @default.
- W2395763878 modified "2023-10-15" @default.
- W2395763878 title "Cost-sensitive feature selection based on adaptive neighborhood granularity with multi-level confidence" @default.
- W2395763878 cites W1496151277 @default.
- W2395763878 cites W1517636450 @default.
- W2395763878 cites W1974753394 @default.
- W2395763878 cites W1979199342 @default.
- W2395763878 cites W1982052293 @default.
- W2395763878 cites W1983105620 @default.
- W2395763878 cites W1983380373 @default.
- W2395763878 cites W1983426508 @default.
- W2395763878 cites W1995804085 @default.
- W2395763878 cites W2018186689 @default.
- W2395763878 cites W2018530017 @default.
- W2395763878 cites W2025027782 @default.
- W2395763878 cites W2040753112 @default.
- W2395763878 cites W2043302707 @default.
- W2395763878 cites W2052608046 @default.
- W2395763878 cites W2060618957 @default.
- W2395763878 cites W2062364223 @default.
- W2395763878 cites W2070808135 @default.
- W2395763878 cites W2071978572 @default.
- W2395763878 cites W2077808043 @default.
- W2395763878 cites W2084840427 @default.
- W2395763878 cites W2097287674 @default.
- W2395763878 cites W2104312285 @default.
- W2395763878 cites W2105437322 @default.
- W2395763878 cites W2109676405 @default.
- W2395763878 cites W2111471879 @default.
- W2395763878 cites W2112992691 @default.
- W2395763878 cites W2115061082 @default.
- W2395763878 cites W2119191234 @default.
- W2395763878 cites W2120100443 @default.
- W2395763878 cites W2122937613 @default.
- W2395763878 cites W2134866037 @default.
- W2395763878 cites W2158633287 @default.
- W2395763878 cites W2162089666 @default.
- W2395763878 cites W2170755382 @default.
- W2395763878 cites W2334303156 @default.
- W2395763878 cites W2912707296 @default.
- W2395763878 cites W4255833381 @default.
- W2395763878 cites W837378864 @default.
- W2395763878 cites W896196729 @default.
- W2395763878 doi "https://doi.org/10.1016/j.ins.2016.05.025" @default.
- W2395763878 hasPublicationYear "2016" @default.
- W2395763878 type Work @default.
- W2395763878 sameAs 2395763878 @default.
- W2395763878 citedByCount "53" @default.
- W2395763878 countsByYear W23957638782017 @default.
- W2395763878 countsByYear W23957638782018 @default.
- W2395763878 countsByYear W23957638782019 @default.
- W2395763878 countsByYear W23957638782020 @default.
- W2395763878 countsByYear W23957638782021 @default.
- W2395763878 countsByYear W23957638782022 @default.
- W2395763878 countsByYear W23957638782023 @default.
- W2395763878 crossrefType "journal-article" @default.
- W2395763878 hasAuthorship W2395763878A5013736647 @default.
- W2395763878 hasAuthorship W2395763878A5054653936 @default.
- W2395763878 hasAuthorship W2395763878A5058078141 @default.
- W2395763878 hasConcept C106131492 @default.
- W2395763878 hasConcept C111012933 @default.
- W2395763878 hasConcept C111919701 @default.
- W2395763878 hasConcept C11413529 @default.
- W2395763878 hasConcept C119857082 @default.
- W2395763878 hasConcept C124101348 @default.
- W2395763878 hasConcept C138885662 @default.
- W2395763878 hasConcept C140779682 @default.
- W2395763878 hasConcept C148483581 @default.
- W2395763878 hasConcept C154945302 @default.
- W2395763878 hasConcept C156884757 @default.
- W2395763878 hasConcept C177264268 @default.
- W2395763878 hasConcept C177774035 @default.
- W2395763878 hasConcept C199360897 @default.
- W2395763878 hasConcept C2776401178 @default.
- W2395763878 hasConcept C31972630 @default.
- W2395763878 hasConcept C41008148 @default.
- W2395763878 hasConcept C41895202 @default.
- W2395763878 hasConcept C58489278 @default.
- W2395763878 hasConcept C81917197 @default.
- W2395763878 hasConceptScore W2395763878C106131492 @default.
- W2395763878 hasConceptScore W2395763878C111012933 @default.
- W2395763878 hasConceptScore W2395763878C111919701 @default.
- W2395763878 hasConceptScore W2395763878C11413529 @default.
- W2395763878 hasConceptScore W2395763878C119857082 @default.
- W2395763878 hasConceptScore W2395763878C124101348 @default.
- W2395763878 hasConceptScore W2395763878C138885662 @default.
- W2395763878 hasConceptScore W2395763878C140779682 @default.
- W2395763878 hasConceptScore W2395763878C148483581 @default.
- W2395763878 hasConceptScore W2395763878C154945302 @default.
- W2395763878 hasConceptScore W2395763878C156884757 @default.
- W2395763878 hasConceptScore W2395763878C177264268 @default.
- W2395763878 hasConceptScore W2395763878C177774035 @default.
- W2395763878 hasConceptScore W2395763878C199360897 @default.