Matches in SemOpenAlex for { <https://semopenalex.org/work/W2395805204> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2395805204 abstract "Computational complexity analysis for cognitive scientists Iris van Rooij [contact person], Johan Kwisthout, Mark Blokpoel Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour Montessorilaan 3, 6525 HR Nijmegen, The Netherlands, i.vanrooij@donders.ru.nl Todd Wareham Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada Keywords: computational complexity theory, computational modeling, intractability, NP-hard, scalability, algorithms, fixed- parameter tractability, approximation. computational complexity analysis, and (c) learn about the philosophical foundations of, and debate surrounding, the use of computational complexity theory for analyzing computational-level theories of cognition. The tutorial will assume a basic level knowledge of cognitive psychology and an affinity with computational considerations. Aims and Motivation Many computational- or rational-level models of cognition postulate computations that appear to be computationally intractable (e.g., NP-hard or worse). Formally, this means that the postulated computations consume an exponential amount of time. Informally, this means that the postulated computations do not scale in any obvious way to explain how the modeled cognitive capacities can operate in the real world outside the lab. This problem of intractability is quite common in cognitive science. It is observed in practically all domains of cognition, including, for instance, perception, language, reasoning, categorization, decision-making, and motor planning. It is also not specific to any particular class of models, as it can arise for symbolic, connectionist, probabilistic (e.g. Bayesian), dynamical, logic-based, and even heuristic models of cognition. How can cognitive scientists effectively deal with the intractability of their models? Several sophisticated and well-established concepts and techniques for computational complexity analysis have been developed in theoretical computer science over the last decades that can be directly utilized by cognitive scientists. Using these techniques cognitive scientists not only can assess whether or not a particular model is intractable, but also identify parameters of the model that are responsible for that intractability. As a result, these techniques can be used to generate hypotheses about how the models can be revised so as to make them computationally tractable, thereby improving the computational plausibility and scalability of the models. With this tutorial we aim to make these techniques for computational complexity analysis available for interested cognitive scientists. Morning session In the morning session, participants will learn about the conceptual and mathematical foundations of computational complexity analysis in the context of cognitive modeling. The session will include a conceptual primer on several complexity-theoretic concepts (e.g., NP-hard, fixed- parameter tractability) and techniques (e.g., polynomial- time and parameterized reduction). All these notions and techniques are also explained in: van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32, 939-984. Participants are kindly requested to read this paper prior to attending the tutorial. During the morning session, participants will have the opportunity to practice the described techniques via hands-on exercises (these can be done using paper and pencil). The lecturers will use an interactive style of instruction to help participants work through the exercises. Afternoon session In the afternoon session, we will illustrate the broad applicability of the methodology. Wareham will guide participants through a detailed analysis of a model of analogy derivation based on Structure-Mapping Theory (van Rooij, Evans, Muller, Gedge, & Wareham, 2008). Blokpoel will do the same for a Bayesian model of action understanding (Blokpoel, Kwisthout, van der Weide, & van Rooij, 2010). Through interactive exercises, participants can see why both models are NP-hard and which parameters cause this intractability. We then consider the important topic of approximation as an approach to dealing with intractability, with a focus on approximating Bayesian inferences. Kwisthout will present various notions of approximation and illustrate novel results on how constraining particular parameters of probability distributions may make approximation Bayesian strategies (like sampling or local search) successful. Our intent here is Audience The target audience of this tutorial consists of post-graduate students and researchers in any subfield of cognitive science who wish to: (a) achieve an introductory level understanding of the basic concepts underlying computational complexity analysis, (b) gain hands-on experience with some of the basic proof techniques in" @default.
- W2395805204 created "2016-06-24" @default.
- W2395805204 creator A5028908560 @default.
- W2395805204 creator A5052015648 @default.
- W2395805204 creator A5054482827 @default.
- W2395805204 creator A5080276145 @default.
- W2395805204 date "2013-01-01" @default.
- W2395805204 modified "2023-09-22" @default.
- W2395805204 title "Computational complexity analysis for cognitive scientists" @default.
- W2395805204 cites W2044665483 @default.
- W2395805204 cites W2144843705 @default.
- W2395805204 cites W2144858914 @default.
- W2395805204 cites W2149852414 @default.
- W2395805204 cites W2159231272 @default.
- W2395805204 cites W2165843844 @default.
- W2395805204 cites W367043469 @default.
- W2395805204 hasPublicationYear "2013" @default.
- W2395805204 type Work @default.
- W2395805204 sameAs 2395805204 @default.
- W2395805204 citedByCount "0" @default.
- W2395805204 crossrefType "journal-article" @default.
- W2395805204 hasAuthorship W2395805204A5028908560 @default.
- W2395805204 hasAuthorship W2395805204A5052015648 @default.
- W2395805204 hasAuthorship W2395805204A5054482827 @default.
- W2395805204 hasAuthorship W2395805204A5080276145 @default.
- W2395805204 hasConcept C11413529 @default.
- W2395805204 hasConcept C15286952 @default.
- W2395805204 hasConcept C154945302 @default.
- W2395805204 hasConcept C15744967 @default.
- W2395805204 hasConcept C169760540 @default.
- W2395805204 hasConcept C169900460 @default.
- W2395805204 hasConcept C173801870 @default.
- W2395805204 hasConcept C179799912 @default.
- W2395805204 hasConcept C188147891 @default.
- W2395805204 hasConcept C191301653 @default.
- W2395805204 hasConcept C19754495 @default.
- W2395805204 hasConcept C41008148 @default.
- W2395805204 hasConcept C45374587 @default.
- W2395805204 hasConcept C48044578 @default.
- W2395805204 hasConcept C49937458 @default.
- W2395805204 hasConcept C50644808 @default.
- W2395805204 hasConcept C55520563 @default.
- W2395805204 hasConcept C66024118 @default.
- W2395805204 hasConcept C77088390 @default.
- W2395805204 hasConcept C80444323 @default.
- W2395805204 hasConcept C8521452 @default.
- W2395805204 hasConcept C94124525 @default.
- W2395805204 hasConcept C96199812 @default.
- W2395805204 hasConceptScore W2395805204C11413529 @default.
- W2395805204 hasConceptScore W2395805204C15286952 @default.
- W2395805204 hasConceptScore W2395805204C154945302 @default.
- W2395805204 hasConceptScore W2395805204C15744967 @default.
- W2395805204 hasConceptScore W2395805204C169760540 @default.
- W2395805204 hasConceptScore W2395805204C169900460 @default.
- W2395805204 hasConceptScore W2395805204C173801870 @default.
- W2395805204 hasConceptScore W2395805204C179799912 @default.
- W2395805204 hasConceptScore W2395805204C188147891 @default.
- W2395805204 hasConceptScore W2395805204C191301653 @default.
- W2395805204 hasConceptScore W2395805204C19754495 @default.
- W2395805204 hasConceptScore W2395805204C41008148 @default.
- W2395805204 hasConceptScore W2395805204C45374587 @default.
- W2395805204 hasConceptScore W2395805204C48044578 @default.
- W2395805204 hasConceptScore W2395805204C49937458 @default.
- W2395805204 hasConceptScore W2395805204C50644808 @default.
- W2395805204 hasConceptScore W2395805204C55520563 @default.
- W2395805204 hasConceptScore W2395805204C66024118 @default.
- W2395805204 hasConceptScore W2395805204C77088390 @default.
- W2395805204 hasConceptScore W2395805204C80444323 @default.
- W2395805204 hasConceptScore W2395805204C8521452 @default.
- W2395805204 hasConceptScore W2395805204C94124525 @default.
- W2395805204 hasConceptScore W2395805204C96199812 @default.
- W2395805204 hasIssue "35" @default.
- W2395805204 hasLocation W23958052041 @default.
- W2395805204 hasOpenAccess W2395805204 @default.
- W2395805204 hasPrimaryLocation W23958052041 @default.
- W2395805204 hasRelatedWork W114484541 @default.
- W2395805204 hasRelatedWork W1530288117 @default.
- W2395805204 hasRelatedWork W1565332750 @default.
- W2395805204 hasRelatedWork W1738130509 @default.
- W2395805204 hasRelatedWork W1798030464 @default.
- W2395805204 hasRelatedWork W1880556978 @default.
- W2395805204 hasRelatedWork W2055409626 @default.
- W2395805204 hasRelatedWork W2143270160 @default.
- W2395805204 hasRelatedWork W2143503607 @default.
- W2395805204 hasRelatedWork W2265865326 @default.
- W2395805204 hasRelatedWork W2401586081 @default.
- W2395805204 hasRelatedWork W2590272766 @default.
- W2395805204 hasRelatedWork W2891394175 @default.
- W2395805204 hasRelatedWork W2909496938 @default.
- W2395805204 hasRelatedWork W2912761898 @default.
- W2395805204 hasRelatedWork W2914559751 @default.
- W2395805204 hasRelatedWork W3034933873 @default.
- W2395805204 hasRelatedWork W3167850394 @default.
- W2395805204 hasRelatedWork W83954701 @default.
- W2395805204 hasRelatedWork W93829251 @default.
- W2395805204 hasVolume "35" @default.
- W2395805204 isParatext "false" @default.
- W2395805204 isRetracted "false" @default.
- W2395805204 magId "2395805204" @default.
- W2395805204 workType "article" @default.