Matches in SemOpenAlex for { <https://semopenalex.org/work/W2395883673> ?p ?o ?g. }
- W2395883673 endingPage "15" @default.
- W2395883673 startingPage "1" @default.
- W2395883673 abstract "When hidden Markov models (HMMs, including discrete HMM and semi-continuous HMM) are used to model and predict the random delays in networked control systems, there are five parameters needed to be estimated. They are the number of different network states, the initial distribution of the network states, the state transition matrix of the hidden Markov chain formed by the network states, the number of different delay observations in the discrete HMM (DHMM) or the number of the Gaussian densities in the semi-continuous HMM (SCHMM), and the delay observation matrix in the DHMM or the combination of the mixture Gaussian distributions in the SCHMM. How to initialize these parameters is very crucial to the precision of the modeling and prediction of random delays. In this paper, the entropy and cluster based initialization methods are proposed to obtain the optimal initialization of these parameters. The effectiveness of the proposed methods is demonstrated by some simulation examples." @default.
- W2395883673 created "2016-06-24" @default.
- W2395883673 creator A5018896387 @default.
- W2395883673 creator A5037560914 @default.
- W2395883673 creator A5074068809 @default.
- W2395883673 creator A5075566885 @default.
- W2395883673 date "2016-10-01" @default.
- W2395883673 modified "2023-09-26" @default.
- W2395883673 title "Initialization of the HMM-based delay model in networked control systems" @default.
- W2395883673 cites W1525902087 @default.
- W2395883673 cites W1607385133 @default.
- W2395883673 cites W1965497192 @default.
- W2395883673 cites W1975886034 @default.
- W2395883673 cites W1978991828 @default.
- W2395883673 cites W1982218468 @default.
- W2395883673 cites W1983491872 @default.
- W2395883673 cites W1992525150 @default.
- W2395883673 cites W2002217769 @default.
- W2395883673 cites W2003995273 @default.
- W2395883673 cites W2040052283 @default.
- W2395883673 cites W2040387915 @default.
- W2395883673 cites W2041163702 @default.
- W2395883673 cites W2045868534 @default.
- W2395883673 cites W2069217348 @default.
- W2395883673 cites W2071949631 @default.
- W2395883673 cites W2072577943 @default.
- W2395883673 cites W2081802666 @default.
- W2395883673 cites W2082711497 @default.
- W2395883673 cites W2090309097 @default.
- W2395883673 cites W2091770693 @default.
- W2395883673 cites W2104956038 @default.
- W2395883673 cites W2106664133 @default.
- W2395883673 cites W2107675445 @default.
- W2395883673 cites W2107745473 @default.
- W2395883673 cites W2118324432 @default.
- W2395883673 cites W2123549544 @default.
- W2395883673 cites W2126525166 @default.
- W2395883673 cites W2128357442 @default.
- W2395883673 cites W2129039072 @default.
- W2395883673 cites W2155306463 @default.
- W2395883673 cites W2157194383 @default.
- W2395883673 cites W2159550366 @default.
- W2395883673 cites W2160978450 @default.
- W2395883673 cites W2170387153 @default.
- W2395883673 cites W2171859308 @default.
- W2395883673 cites W938843266 @default.
- W2395883673 cites W2004558397 @default.
- W2395883673 doi "https://doi.org/10.1016/j.ins.2016.05.013" @default.
- W2395883673 hasPublicationYear "2016" @default.
- W2395883673 type Work @default.
- W2395883673 sameAs 2395883673 @default.
- W2395883673 citedByCount "8" @default.
- W2395883673 countsByYear W23958836732017 @default.
- W2395883673 countsByYear W23958836732018 @default.
- W2395883673 countsByYear W23958836732020 @default.
- W2395883673 countsByYear W23958836732021 @default.
- W2395883673 crossrefType "journal-article" @default.
- W2395883673 hasAuthorship W2395883673A5018896387 @default.
- W2395883673 hasAuthorship W2395883673A5037560914 @default.
- W2395883673 hasAuthorship W2395883673A5074068809 @default.
- W2395883673 hasAuthorship W2395883673A5075566885 @default.
- W2395883673 hasConcept C11413529 @default.
- W2395883673 hasConcept C114466953 @default.
- W2395883673 hasConcept C119857082 @default.
- W2395883673 hasConcept C121332964 @default.
- W2395883673 hasConcept C153180895 @default.
- W2395883673 hasConcept C154945302 @default.
- W2395883673 hasConcept C163716315 @default.
- W2395883673 hasConcept C163836022 @default.
- W2395883673 hasConcept C199360897 @default.
- W2395883673 hasConcept C23224414 @default.
- W2395883673 hasConcept C41008148 @default.
- W2395883673 hasConcept C54907487 @default.
- W2395883673 hasConcept C62520636 @default.
- W2395883673 hasConcept C64939953 @default.
- W2395883673 hasConcept C98763669 @default.
- W2395883673 hasConceptScore W2395883673C11413529 @default.
- W2395883673 hasConceptScore W2395883673C114466953 @default.
- W2395883673 hasConceptScore W2395883673C119857082 @default.
- W2395883673 hasConceptScore W2395883673C121332964 @default.
- W2395883673 hasConceptScore W2395883673C153180895 @default.
- W2395883673 hasConceptScore W2395883673C154945302 @default.
- W2395883673 hasConceptScore W2395883673C163716315 @default.
- W2395883673 hasConceptScore W2395883673C163836022 @default.
- W2395883673 hasConceptScore W2395883673C199360897 @default.
- W2395883673 hasConceptScore W2395883673C23224414 @default.
- W2395883673 hasConceptScore W2395883673C41008148 @default.
- W2395883673 hasConceptScore W2395883673C54907487 @default.
- W2395883673 hasConceptScore W2395883673C62520636 @default.
- W2395883673 hasConceptScore W2395883673C64939953 @default.
- W2395883673 hasConceptScore W2395883673C98763669 @default.
- W2395883673 hasLocation W23958836731 @default.
- W2395883673 hasOpenAccess W2395883673 @default.
- W2395883673 hasPrimaryLocation W23958836731 @default.
- W2395883673 hasRelatedWork W1980578514 @default.
- W2395883673 hasRelatedWork W2118728396 @default.
- W2395883673 hasRelatedWork W2155943534 @default.
- W2395883673 hasRelatedWork W2350115929 @default.