Matches in SemOpenAlex for { <https://semopenalex.org/work/W2396098103> ?p ?o ?g. }
- W2396098103 endingPage "19" @default.
- W2396098103 startingPage "8" @default.
- W2396098103 abstract "We reviewed successes and challenges of sensing systems for fruit detection.We also reviewed the capabilities of sensors used for fruit localization.Challenges included occlusion, clustering and variable lighting condition.We presented future direction including amendment of orchard environment.Sensor fusion and human machine collaboration can also be areas for research. This paper reviews the research and development of machine vision systems for fruit detection and localization for robotic harvesting and/or crop-load estimation of specialty tree crops including apples, pears, and citrus. Variable lighting condition, occlusions, and clustering are some of the important issues needed to be addressed for accurate detection and localization of fruit in orchard environment. To address these issues, various techniques have been investigated using different types of sensors and their combinations as well as with different image processing techniques. This paper summarizes various techniques and their advantages and disadvantages in detecting fruit in plant or tree canopies. The paper also summarizes the sensors and systems developed and used by researchers to localize fruit as well as the potential and limitations of those systems. Finally, major challenges for the successful application of machine vision system for robotic fruit harvesting and crop-load estimation, and potential future directions for research and development are discussed." @default.
- W2396098103 created "2016-06-24" @default.
- W2396098103 creator A5008495950 @default.
- W2396098103 creator A5013737840 @default.
- W2396098103 creator A5034641298 @default.
- W2396098103 creator A5042241112 @default.
- W2396098103 creator A5087884831 @default.
- W2396098103 date "2015-08-01" @default.
- W2396098103 modified "2023-10-17" @default.
- W2396098103 title "Sensors and systems for fruit detection and localization: A review" @default.
- W2396098103 cites W1583128514 @default.
- W2396098103 cites W1606562532 @default.
- W2396098103 cites W1694405491 @default.
- W2396098103 cites W1967006476 @default.
- W2396098103 cites W1969391481 @default.
- W2396098103 cites W1974334374 @default.
- W2396098103 cites W1980180011 @default.
- W2396098103 cites W1984789540 @default.
- W2396098103 cites W1986235237 @default.
- W2396098103 cites W1988445395 @default.
- W2396098103 cites W1992730755 @default.
- W2396098103 cites W1993925155 @default.
- W2396098103 cites W1995212378 @default.
- W2396098103 cites W1999523600 @default.
- W2396098103 cites W1999843109 @default.
- W2396098103 cites W2001656713 @default.
- W2396098103 cites W2014558536 @default.
- W2396098103 cites W2018563411 @default.
- W2396098103 cites W2019168270 @default.
- W2396098103 cites W2039869785 @default.
- W2396098103 cites W2040257138 @default.
- W2396098103 cites W2041340070 @default.
- W2396098103 cites W2043188177 @default.
- W2396098103 cites W2046367349 @default.
- W2396098103 cites W2047412445 @default.
- W2396098103 cites W2053782190 @default.
- W2396098103 cites W2057996818 @default.
- W2396098103 cites W2059290539 @default.
- W2396098103 cites W2061153180 @default.
- W2396098103 cites W2062599688 @default.
- W2396098103 cites W2064069471 @default.
- W2396098103 cites W2064352738 @default.
- W2396098103 cites W2064621244 @default.
- W2396098103 cites W2070700571 @default.
- W2396098103 cites W2071390953 @default.
- W2396098103 cites W2072150826 @default.
- W2396098103 cites W2072364589 @default.
- W2396098103 cites W2075749116 @default.
- W2396098103 cites W2087616360 @default.
- W2396098103 cites W2087685837 @default.
- W2396098103 cites W2088632824 @default.
- W2396098103 cites W2091119928 @default.
- W2396098103 cites W2092874535 @default.
- W2396098103 cites W2094277420 @default.
- W2396098103 cites W2094766409 @default.
- W2396098103 cites W2098888435 @default.
- W2396098103 cites W2098939983 @default.
- W2396098103 cites W2103060758 @default.
- W2396098103 cites W2109283481 @default.
- W2396098103 cites W2124386111 @default.
- W2396098103 cites W2131829150 @default.
- W2396098103 cites W2133169919 @default.
- W2396098103 cites W2133230579 @default.
- W2396098103 cites W2134974756 @default.
- W2396098103 cites W2138753567 @default.
- W2396098103 cites W2145567004 @default.
- W2396098103 cites W2151103935 @default.
- W2396098103 cites W2156585878 @default.
- W2396098103 cites W2161435714 @default.
- W2396098103 cites W2161541556 @default.
- W2396098103 cites W2164626235 @default.
- W2396098103 cites W2170347946 @default.
- W2396098103 cites W2182749117 @default.
- W2396098103 cites W2501700740 @default.
- W2396098103 cites W2541775652 @default.
- W2396098103 cites W947585488 @default.
- W2396098103 doi "https://doi.org/10.1016/j.compag.2015.05.021" @default.
- W2396098103 hasPublicationYear "2015" @default.
- W2396098103 type Work @default.
- W2396098103 sameAs 2396098103 @default.
- W2396098103 citedByCount "366" @default.
- W2396098103 countsByYear W23960981032015 @default.
- W2396098103 countsByYear W23960981032016 @default.
- W2396098103 countsByYear W23960981032017 @default.
- W2396098103 countsByYear W23960981032018 @default.
- W2396098103 countsByYear W23960981032019 @default.
- W2396098103 countsByYear W23960981032020 @default.
- W2396098103 countsByYear W23960981032021 @default.
- W2396098103 countsByYear W23960981032022 @default.
- W2396098103 countsByYear W23960981032023 @default.
- W2396098103 crossrefType "journal-article" @default.
- W2396098103 hasAuthorship W2396098103A5008495950 @default.
- W2396098103 hasAuthorship W2396098103A5013737840 @default.
- W2396098103 hasAuthorship W2396098103A5034641298 @default.
- W2396098103 hasAuthorship W2396098103A5042241112 @default.
- W2396098103 hasAuthorship W2396098103A5087884831 @default.
- W2396098103 hasConcept C154945302 @default.
- W2396098103 hasConcept C39432304 @default.