Matches in SemOpenAlex for { <https://semopenalex.org/work/W2396209911> ?p ?o ?g. }
- W2396209911 endingPage "321" @default.
- W2396209911 startingPage "284" @default.
- W2396209911 abstract "The three-dimensional, inviscid and viscous flow instability modes that appear on a solid-body rotation flow in a finite-length straight, circular pipe are analysed. This study is a direct extension of the Wang & Rusak ( Phys. Fluids , vol. 8 (4), 1996 a , pp. 1007–1016) analysis of axisymmetric instabilities on inviscid swirling flows in a pipe. The linear stability equations are the same as those derived by Kelvin ( Phil. Mag. , vol. 10, 1880, pp. 155–168). However, we study a general mode of perturbation that satisfies the inlet, outlet and wall conditions of a flow in a finite-length pipe with a fixed in time and in space vortex generator ahead of it. This mode is different from the classical normal mode of perturbations. The eigenvalue problem for the growth rate and the shape of the perturbations for any azimuthal wavenumber $m$ consists of a linear system of partial differential equations in terms of the axial and radial coordinates ( $x,r$ ). The stability problem is solved numerically for all azimuthal wavenumbers $m$ . The computed growth rates and the related shapes of the various perturbation modes that appear in sequence as a function of the base flow swirl ratio ( ${itomega}$ ) and pipe length ( $L$ ) are presented. In the inviscid flow case, the $m=1$ modes are the first to become unstable as the swirl ratio is increased and dominate the perturbation’s growth in a certain range of swirl levels. The $m=1$ instability modes compete with the axisymmetric ( $m=0$ ) instability modes as the swirl ratio is further increased. In the viscous flow case, the viscous damping effects reduce the modes’ growth rates. The neutral stability line is presented in a Reynolds number ( $Re$ ) versus swirl ratio ( ${itomega}$ ) diagram and can be used to predict the first appearance of axisymmetric or spiral instabilities as a function of $Re$ and $L$ . We use the Reynolds–Orr equation to analyse the various production terms of the perturbation’s kinetic energy and establish the elimination of the flow axial homogeneity at high swirl levels as the underlying physical mechanism that leads to flow exchange of stability and to the appearance of both spiral and axisymmetric instabilities. The viscous effects in the bulk have only a passive influence on the modes’ shapes and growth rates. These effects decrease with the increase of $Re$ . We show that the inviscid flow stability results are the inviscid-limit stability results of high- $Re$ rotating flows." @default.
- W2396209911 created "2016-06-24" @default.
- W2396209911 creator A5051426467 @default.
- W2396209911 creator A5053637121 @default.
- W2396209911 creator A5061547748 @default.
- W2396209911 creator A5064396780 @default.
- W2396209911 date "2016-05-18" @default.
- W2396209911 modified "2023-09-23" @default.
- W2396209911 title "On the three-dimensional stability of a solid-body rotation flow in a finite-length rotating pipe" @default.
- W2396209911 cites W1482836892 @default.
- W2396209911 cites W1969331175 @default.
- W2396209911 cites W1981906219 @default.
- W2396209911 cites W1983786521 @default.
- W2396209911 cites W1985168710 @default.
- W2396209911 cites W1986969894 @default.
- W2396209911 cites W1994663198 @default.
- W2396209911 cites W2013855034 @default.
- W2396209911 cites W2015908274 @default.
- W2396209911 cites W2030104674 @default.
- W2396209911 cites W2030488842 @default.
- W2396209911 cites W2031198719 @default.
- W2396209911 cites W2032376462 @default.
- W2396209911 cites W2033376959 @default.
- W2396209911 cites W2043887949 @default.
- W2396209911 cites W2049055371 @default.
- W2396209911 cites W2064624009 @default.
- W2396209911 cites W2069988757 @default.
- W2396209911 cites W2070675313 @default.
- W2396209911 cites W2076476470 @default.
- W2396209911 cites W2080470842 @default.
- W2396209911 cites W2085252771 @default.
- W2396209911 cites W2087879642 @default.
- W2396209911 cites W2088148006 @default.
- W2396209911 cites W2089627539 @default.
- W2396209911 cites W2090033496 @default.
- W2396209911 cites W2097728399 @default.
- W2396209911 cites W2099305964 @default.
- W2396209911 cites W2117069901 @default.
- W2396209911 cites W2119430664 @default.
- W2396209911 cites W2121029913 @default.
- W2396209911 cites W2122253361 @default.
- W2396209911 cites W2128213353 @default.
- W2396209911 cites W213469731 @default.
- W2396209911 cites W2137632129 @default.
- W2396209911 cites W2146429726 @default.
- W2396209911 cites W2314210593 @default.
- W2396209911 cites W4246653424 @default.
- W2396209911 cites W4254912436 @default.
- W2396209911 cites W4292414061 @default.
- W2396209911 doi "https://doi.org/10.1017/jfm.2016.223" @default.
- W2396209911 hasPublicationYear "2016" @default.
- W2396209911 type Work @default.
- W2396209911 sameAs 2396209911 @default.
- W2396209911 citedByCount "19" @default.
- W2396209911 countsByYear W23962099112016 @default.
- W2396209911 countsByYear W23962099112017 @default.
- W2396209911 countsByYear W23962099112018 @default.
- W2396209911 countsByYear W23962099112020 @default.
- W2396209911 countsByYear W23962099112021 @default.
- W2396209911 countsByYear W23962099112022 @default.
- W2396209911 crossrefType "journal-article" @default.
- W2396209911 hasAuthorship W2396209911A5051426467 @default.
- W2396209911 hasAuthorship W2396209911A5053637121 @default.
- W2396209911 hasAuthorship W2396209911A5061547748 @default.
- W2396209911 hasAuthorship W2396209911A5064396780 @default.
- W2396209911 hasConcept C120665830 @default.
- W2396209911 hasConcept C121130766 @default.
- W2396209911 hasConcept C121332964 @default.
- W2396209911 hasConcept C140820882 @default.
- W2396209911 hasConcept C177918212 @default.
- W2396209911 hasConcept C207821765 @default.
- W2396209911 hasConcept C33026886 @default.
- W2396209911 hasConcept C43466630 @default.
- W2396209911 hasConcept C57879066 @default.
- W2396209911 hasConcept C62520636 @default.
- W2396209911 hasConcept C74650414 @default.
- W2396209911 hasConcept C86252789 @default.
- W2396209911 hasConceptScore W2396209911C120665830 @default.
- W2396209911 hasConceptScore W2396209911C121130766 @default.
- W2396209911 hasConceptScore W2396209911C121332964 @default.
- W2396209911 hasConceptScore W2396209911C140820882 @default.
- W2396209911 hasConceptScore W2396209911C177918212 @default.
- W2396209911 hasConceptScore W2396209911C207821765 @default.
- W2396209911 hasConceptScore W2396209911C33026886 @default.
- W2396209911 hasConceptScore W2396209911C43466630 @default.
- W2396209911 hasConceptScore W2396209911C57879066 @default.
- W2396209911 hasConceptScore W2396209911C62520636 @default.
- W2396209911 hasConceptScore W2396209911C74650414 @default.
- W2396209911 hasConceptScore W2396209911C86252789 @default.
- W2396209911 hasLocation W23962099111 @default.
- W2396209911 hasOpenAccess W2396209911 @default.
- W2396209911 hasPrimaryLocation W23962099111 @default.
- W2396209911 hasRelatedWork W1567197834 @default.
- W2396209911 hasRelatedWork W1786535038 @default.
- W2396209911 hasRelatedWork W1973686910 @default.
- W2396209911 hasRelatedWork W2008019161 @default.
- W2396209911 hasRelatedWork W2041457410 @default.
- W2396209911 hasRelatedWork W2093026528 @default.