Matches in SemOpenAlex for { <https://semopenalex.org/work/W2396252827> ?p ?o ?g. }
- W2396252827 abstract "Bayesian Belief Networks or BBNs are gaining prominence in ecology. They are a powerful and attractive tool for managing and understanding complex processes because they represent the process graphically, where each node in the network represents either the prior or conditional probability of the parameter of interest. Causal links are represented by arcs that join to nodes and indicate the dependencies between nodes in the network. The fundamental idea behind these causal relationships is Bayes’ theorem, which provides a premise for combining the prior and conditional probabilities assigned to each node of the BBN to form posterior estimates of the quantities of interest that can be readily updated. Despite their popularity and wide spread use in solving complex, large scale ecological problems of importance there are a number of issues relating to the structure of the model and incorporation of expert information that modellers need to be aware of. This leads us to ask “How can we really believe the output from a BBN, given that a large proportion of the information feeding into the network often relies on expert opinion that may be inaccurate or carry hidden biases?” Analysts are faced with three important tasks when producing a BBN: (1) identifying the variables pertinent to the problem at hand; (2) identifying the relationships between these variables; and (3) expressing these relationships as a series of conditional probabilities. Through this implementation a number of issues can arise resulting in an ill-defined BBN which inadequately reflects the underlying system processes nor captures and reflects the expert opinion defining these processes well. Using a popular BBN software package, Netica™, we examine some of the potential pitfalls of BBNs through two specific examples. The first focuses on a fishery management problem, which examines whether management should remain passive or seek a more active approach to commercial fishing. The second investigates the quarantine risks associated with the importation of commodities and examines the probability that pests or diseases will enter a nation with imports of goods. We examine issues of discretisation (process of converting a continuous probability distribution to one that is discrete), scaling (process of transforming data), complexity (number of nodes and linkages) and network structure (nodes and linkages defining causal relationships) in the context of these two examples and show that each can have a dramatic impact on the posterior probabilities of each model investigated and therefore have the potential to impact management decisions if implemented. In our analysis, we show that although BBNs offer a powerful mechanism for capturing both expert information and empirical data (where available) and can also address issues of uncertainty through the elicitation of conditional probabilities, there are some aspects of BBNs that the modeller needs to consider. We highlight these issues and suggest ways in which to guard against these problems so that BBNs are used more appropriately for the modelling exercise being considered." @default.
- W2396252827 created "2016-06-24" @default.
- W2396252827 creator A5039495342 @default.
- W2396252827 date "2009-01-01" @default.
- W2396252827 modified "2023-10-06" @default.
- W2396252827 title "How believable is your BBN" @default.
- W2396252827 cites W1486836253 @default.
- W2396252827 cites W1589375716 @default.
- W2396252827 cites W1593793857 @default.
- W2396252827 cites W1973107043 @default.
- W2396252827 cites W1976452867 @default.
- W2396252827 cites W1999936884 @default.
- W2396252827 cites W2040965886 @default.
- W2396252827 cites W2050607405 @default.
- W2396252827 cites W2053852032 @default.
- W2396252827 cites W2062592934 @default.
- W2396252827 cites W2065496891 @default.
- W2396252827 cites W2088311131 @default.
- W2396252827 cites W2096242147 @default.
- W2396252827 cites W2144466474 @default.
- W2396252827 cites W2165084631 @default.
- W2396252827 cites W2171979263 @default.
- W2396252827 cites W2479039069 @default.
- W2396252827 cites W2485175960 @default.
- W2396252827 cites W252395053 @default.
- W2396252827 cites W2978567598 @default.
- W2396252827 cites W438392026 @default.
- W2396252827 hasPublicationYear "2009" @default.
- W2396252827 type Work @default.
- W2396252827 sameAs 2396252827 @default.
- W2396252827 citedByCount "5" @default.
- W2396252827 countsByYear W23962528272012 @default.
- W2396252827 countsByYear W23962528272013 @default.
- W2396252827 countsByYear W23962528272020 @default.
- W2396252827 crossrefType "journal-article" @default.
- W2396252827 hasAuthorship W2396252827A5039495342 @default.
- W2396252827 hasConcept C105795698 @default.
- W2396252827 hasConcept C107673813 @default.
- W2396252827 hasConcept C111919701 @default.
- W2396252827 hasConcept C119857082 @default.
- W2396252827 hasConcept C127413603 @default.
- W2396252827 hasConcept C138885662 @default.
- W2396252827 hasConcept C154945302 @default.
- W2396252827 hasConcept C15744967 @default.
- W2396252827 hasConcept C207201462 @default.
- W2396252827 hasConcept C2778023277 @default.
- W2396252827 hasConcept C2780586970 @default.
- W2396252827 hasConcept C33724603 @default.
- W2396252827 hasConcept C33923547 @default.
- W2396252827 hasConcept C41008148 @default.
- W2396252827 hasConcept C41895202 @default.
- W2396252827 hasConcept C44492722 @default.
- W2396252827 hasConcept C62611344 @default.
- W2396252827 hasConcept C66938386 @default.
- W2396252827 hasConcept C77805123 @default.
- W2396252827 hasConcept C80444323 @default.
- W2396252827 hasConcept C98045186 @default.
- W2396252827 hasConceptScore W2396252827C105795698 @default.
- W2396252827 hasConceptScore W2396252827C107673813 @default.
- W2396252827 hasConceptScore W2396252827C111919701 @default.
- W2396252827 hasConceptScore W2396252827C119857082 @default.
- W2396252827 hasConceptScore W2396252827C127413603 @default.
- W2396252827 hasConceptScore W2396252827C138885662 @default.
- W2396252827 hasConceptScore W2396252827C154945302 @default.
- W2396252827 hasConceptScore W2396252827C15744967 @default.
- W2396252827 hasConceptScore W2396252827C207201462 @default.
- W2396252827 hasConceptScore W2396252827C2778023277 @default.
- W2396252827 hasConceptScore W2396252827C2780586970 @default.
- W2396252827 hasConceptScore W2396252827C33724603 @default.
- W2396252827 hasConceptScore W2396252827C33923547 @default.
- W2396252827 hasConceptScore W2396252827C41008148 @default.
- W2396252827 hasConceptScore W2396252827C41895202 @default.
- W2396252827 hasConceptScore W2396252827C44492722 @default.
- W2396252827 hasConceptScore W2396252827C62611344 @default.
- W2396252827 hasConceptScore W2396252827C66938386 @default.
- W2396252827 hasConceptScore W2396252827C77805123 @default.
- W2396252827 hasConceptScore W2396252827C80444323 @default.
- W2396252827 hasConceptScore W2396252827C98045186 @default.
- W2396252827 hasLocation W23962528271 @default.
- W2396252827 hasOpenAccess W2396252827 @default.
- W2396252827 hasPrimaryLocation W23962528271 @default.
- W2396252827 hasRelatedWork W1565476547 @default.
- W2396252827 hasRelatedWork W1630842919 @default.
- W2396252827 hasRelatedWork W1875550349 @default.
- W2396252827 hasRelatedWork W1973107043 @default.
- W2396252827 hasRelatedWork W2150798249 @default.
- W2396252827 hasRelatedWork W2478490744 @default.
- W2396252827 hasRelatedWork W2573776679 @default.
- W2396252827 hasRelatedWork W2801882893 @default.
- W2396252827 hasRelatedWork W2900531429 @default.
- W2396252827 hasRelatedWork W2903362947 @default.
- W2396252827 hasRelatedWork W3001234368 @default.
- W2396252827 hasRelatedWork W3020821933 @default.
- W2396252827 hasRelatedWork W3105957474 @default.
- W2396252827 hasRelatedWork W3166542830 @default.
- W2396252827 hasRelatedWork W3186435717 @default.
- W2396252827 hasRelatedWork W43728729 @default.
- W2396252827 hasRelatedWork W83305684 @default.
- W2396252827 hasRelatedWork W993910698 @default.
- W2396252827 hasRelatedWork W1579226731 @default.