Matches in SemOpenAlex for { <https://semopenalex.org/work/W2396602822> ?p ?o ?g. }
- W2396602822 endingPage "77" @default.
- W2396602822 startingPage "64" @default.
- W2396602822 abstract "This research proposes a Bayesian Network-based methodology to extract moving vessels from a plethora of blips captured in frame-by-frame radar images. First of all, the inter-frame differences or graph characteristics of blips, such as velocity, direction, and shape, are quantified and selected as nodes to construct a Directed Acyclic Graph (DAG), which is used for reasoning the probability of a blip being a moving vessel. Particularly, an unequal-distance discretisation method is proposed to reduce the intervals of a blip's characteristics for avoiding the combinatorial explosion problem. Then, the undetermined DAG structure and parameters are learned from manually verified data samples. Finally, based on the probabilities reasoned by the DAG, judgments on blips being moving vessels are determined by an appropriate threshold on a Receiver Operating Characteristic (ROC) curve. The unique strength of the proposed methodology includes laying the foundation of targets extraction on original radar images and verified records without making any unrealistic assumptions on objects' states. A real case study has been conducted to validate the effectiveness and accuracy of the proposed methodology." @default.
- W2396602822 created "2016-06-24" @default.
- W2396602822 creator A5002816626 @default.
- W2396602822 creator A5018244700 @default.
- W2396602822 creator A5036514560 @default.
- W2396602822 creator A5074945035 @default.
- W2396602822 creator A5079396648 @default.
- W2396602822 date "2016-07-01" @default.
- W2396602822 modified "2023-10-10" @default.
- W2396602822 title "A novel marine radar targets extraction approach based on sequential images and Bayesian Network" @default.
- W2396602822 cites W1912982817 @default.
- W2396602822 cites W1934306740 @default.
- W2396602822 cites W1969613517 @default.
- W2396602822 cites W1976611483 @default.
- W2396602822 cites W1981068239 @default.
- W2396602822 cites W1981994944 @default.
- W2396602822 cites W1982601383 @default.
- W2396602822 cites W1983347928 @default.
- W2396602822 cites W1986140147 @default.
- W2396602822 cites W1986326306 @default.
- W2396602822 cites W1986750708 @default.
- W2396602822 cites W1988301286 @default.
- W2396602822 cites W1993853885 @default.
- W2396602822 cites W1996598870 @default.
- W2396602822 cites W2017606086 @default.
- W2396602822 cites W2023331968 @default.
- W2396602822 cites W2029249940 @default.
- W2396602822 cites W2034126143 @default.
- W2396602822 cites W2036120082 @default.
- W2396602822 cites W2042508290 @default.
- W2396602822 cites W2045759663 @default.
- W2396602822 cites W2047002159 @default.
- W2396602822 cites W2050837235 @default.
- W2396602822 cites W2065217711 @default.
- W2396602822 cites W2076063813 @default.
- W2396602822 cites W2076295451 @default.
- W2396602822 cites W2079227271 @default.
- W2396602822 cites W2086694237 @default.
- W2396602822 cites W2091809659 @default.
- W2396602822 cites W2097502882 @default.
- W2396602822 cites W2106307116 @default.
- W2396602822 cites W2112128020 @default.
- W2396602822 cites W2120268956 @default.
- W2396602822 cites W2126812292 @default.
- W2396602822 cites W2138255088 @default.
- W2396602822 cites W2153187493 @default.
- W2396602822 cites W2292798589 @default.
- W2396602822 cites W2406470551 @default.
- W2396602822 doi "https://doi.org/10.1016/j.oceaneng.2016.04.030" @default.
- W2396602822 hasPublicationYear "2016" @default.
- W2396602822 type Work @default.
- W2396602822 sameAs 2396602822 @default.
- W2396602822 citedByCount "27" @default.
- W2396602822 countsByYear W23966028222016 @default.
- W2396602822 countsByYear W23966028222017 @default.
- W2396602822 countsByYear W23966028222018 @default.
- W2396602822 countsByYear W23966028222019 @default.
- W2396602822 countsByYear W23966028222020 @default.
- W2396602822 countsByYear W23966028222021 @default.
- W2396602822 countsByYear W23966028222022 @default.
- W2396602822 countsByYear W23966028222023 @default.
- W2396602822 crossrefType "journal-article" @default.
- W2396602822 hasAuthorship W2396602822A5002816626 @default.
- W2396602822 hasAuthorship W2396602822A5018244700 @default.
- W2396602822 hasAuthorship W2396602822A5036514560 @default.
- W2396602822 hasAuthorship W2396602822A5074945035 @default.
- W2396602822 hasAuthorship W2396602822A5079396648 @default.
- W2396602822 hasBestOaLocation W23966028221 @default.
- W2396602822 hasConcept C107673813 @default.
- W2396602822 hasConcept C11413529 @default.
- W2396602822 hasConcept C124101348 @default.
- W2396602822 hasConcept C126042441 @default.
- W2396602822 hasConcept C132094186 @default.
- W2396602822 hasConcept C132525143 @default.
- W2396602822 hasConcept C134306372 @default.
- W2396602822 hasConcept C153180895 @default.
- W2396602822 hasConcept C154945302 @default.
- W2396602822 hasConcept C31972630 @default.
- W2396602822 hasConcept C33724603 @default.
- W2396602822 hasConcept C33923547 @default.
- W2396602822 hasConcept C41008148 @default.
- W2396602822 hasConcept C554190296 @default.
- W2396602822 hasConcept C73000952 @default.
- W2396602822 hasConcept C74197172 @default.
- W2396602822 hasConcept C76155785 @default.
- W2396602822 hasConcept C80444323 @default.
- W2396602822 hasConceptScore W2396602822C107673813 @default.
- W2396602822 hasConceptScore W2396602822C11413529 @default.
- W2396602822 hasConceptScore W2396602822C124101348 @default.
- W2396602822 hasConceptScore W2396602822C126042441 @default.
- W2396602822 hasConceptScore W2396602822C132094186 @default.
- W2396602822 hasConceptScore W2396602822C132525143 @default.
- W2396602822 hasConceptScore W2396602822C134306372 @default.
- W2396602822 hasConceptScore W2396602822C153180895 @default.
- W2396602822 hasConceptScore W2396602822C154945302 @default.
- W2396602822 hasConceptScore W2396602822C31972630 @default.
- W2396602822 hasConceptScore W2396602822C33724603 @default.
- W2396602822 hasConceptScore W2396602822C33923547 @default.