Matches in SemOpenAlex for { <https://semopenalex.org/work/W2396735501> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2396735501 endingPage "23" @default.
- W2396735501 startingPage "5" @default.
- W2396735501 abstract "Keele automaattöötluse jaoks on püsiühendite tuvastamine oluline ülesanne, mille lahendamiseks on püütud ühendeid eri meetodeid rakendades automaatselt klassifitseerida ning nende kompositsionaalsust määrata. Artiklis rakendatakse sõnadevahelise seose tugevuse mõõtmise statistilisi meetodeid eesti keele ühendverbide automaatseks klassifitseerimiseks nende tähenduse moodustamise viisi alusel ning vaadeldakse, millise meetodi tulemused on kõige paremad ja kas need on piisavalt head, et ühendverbide jaotus võiks sellele meetodile tugineda. Uurimuse põhieesmärk on välja selgitada, kas distributiivse semantika vahendeid rakendades on võimalik automaatselt kindlaks määrata eesti keele püsiühendite kompositsionaalsuse taset. Selleks tutvustatakse ja rakendatakse distributiivsel semantikal põhinevat tarkvara word2vec. Detecting the compositionality of Estonian particle verbs The purposes of this article are to automatically classify Estonian particle verbs and detect their degree of compositionality. In order to group particle verbs, the lexical association measures (AMs) are compared. For the detection of the degree of compositionality of Estonian particle verbs, a model based on distributional semantics is used. The experiment is carried out with the word2vec tool, using a continuous bag-of-words model which predicts the word given its context. The analysis of the comparison of AMs revealed that none of the AMs used achieve high enough precision values to classify the particle verbs. Hence, it can be assumed that Estonian particle verbs cannot be divided cleanly into the classes of compositional and non-compositional particle verbs, but rather populate a continuum between entirely compositional and entirely non-compositional expressions. The experiment of assessing the degree of compositionality of the particle verbs using distributional semantic model proved successful. It is demonstrated that the value of cosine similarity can predict the degree of compositionality of particle verbs. However, in order to evaluate the method introduced here, it is important to create a ranking of human judgement on semantic compositionality for a series of particle verbs and base verbs to which they correspond." @default.
- W2396735501 created "2016-06-24" @default.
- W2396735501 creator A5057518355 @default.
- W2396735501 date "2016-05-04" @default.
- W2396735501 modified "2023-10-02" @default.
- W2396735501 title "Eesti keele ühendverbide kompositsionaalsuse määramine" @default.
- W2396735501 cites W1498763386 @default.
- W2396735501 cites W153318553 @default.
- W2396735501 cites W1574901103 @default.
- W2396735501 cites W1836521361 @default.
- W2396735501 cites W1973942085 @default.
- W2396735501 cites W1978400666 @default.
- W2396735501 cites W1995341919 @default.
- W2396735501 cites W2005181355 @default.
- W2396735501 cites W2058103205 @default.
- W2396735501 cites W2074228526 @default.
- W2396735501 cites W2090826278 @default.
- W2396735501 cites W2091477393 @default.
- W2396735501 cites W2103464847 @default.
- W2396735501 cites W2112184938 @default.
- W2396735501 cites W2126725946 @default.
- W2396735501 cites W2155848762 @default.
- W2396735501 cites W2166776180 @default.
- W2396735501 cites W2250528956 @default.
- W2396735501 cites W2251803266 @default.
- W2396735501 cites W2325679028 @default.
- W2396735501 cites W2405280137 @default.
- W2396735501 cites W2770390770 @default.
- W2396735501 cites W2882319491 @default.
- W2396735501 cites W2950577311 @default.
- W2396735501 cites W2991446475 @default.
- W2396735501 doi "https://doi.org/10.5128/erya12.01" @default.
- W2396735501 hasPublicationYear "2016" @default.
- W2396735501 type Work @default.
- W2396735501 sameAs 2396735501 @default.
- W2396735501 citedByCount "0" @default.
- W2396735501 crossrefType "journal-article" @default.
- W2396735501 hasAuthorship W2396735501A5057518355 @default.
- W2396735501 hasBestOaLocation W23967355011 @default.
- W2396735501 hasConcept C121375916 @default.
- W2396735501 hasConcept C138885662 @default.
- W2396735501 hasConcept C154945302 @default.
- W2396735501 hasConcept C204321447 @default.
- W2396735501 hasConcept C2776092919 @default.
- W2396735501 hasConcept C2776461190 @default.
- W2396735501 hasConcept C41008148 @default.
- W2396735501 hasConcept C41608201 @default.
- W2396735501 hasConcept C41895202 @default.
- W2396735501 hasConceptScore W2396735501C121375916 @default.
- W2396735501 hasConceptScore W2396735501C138885662 @default.
- W2396735501 hasConceptScore W2396735501C154945302 @default.
- W2396735501 hasConceptScore W2396735501C204321447 @default.
- W2396735501 hasConceptScore W2396735501C2776092919 @default.
- W2396735501 hasConceptScore W2396735501C2776461190 @default.
- W2396735501 hasConceptScore W2396735501C41008148 @default.
- W2396735501 hasConceptScore W2396735501C41608201 @default.
- W2396735501 hasConceptScore W2396735501C41895202 @default.
- W2396735501 hasLocation W23967355011 @default.
- W2396735501 hasLocation W23967355012 @default.
- W2396735501 hasOpenAccess W2396735501 @default.
- W2396735501 hasPrimaryLocation W23967355011 @default.
- W2396735501 hasRelatedWork W2396735501 @default.
- W2396735501 hasRelatedWork W2588169157 @default.
- W2396735501 hasRelatedWork W2740606975 @default.
- W2396735501 hasRelatedWork W2746217931 @default.
- W2396735501 hasRelatedWork W2810280135 @default.
- W2396735501 hasRelatedWork W2973676695 @default.
- W2396735501 hasRelatedWork W2984206076 @default.
- W2396735501 hasRelatedWork W2993873509 @default.
- W2396735501 hasRelatedWork W4214879735 @default.
- W2396735501 hasRelatedWork W4312833533 @default.
- W2396735501 hasVolume "12" @default.
- W2396735501 isParatext "false" @default.
- W2396735501 isRetracted "false" @default.
- W2396735501 magId "2396735501" @default.
- W2396735501 workType "article" @default.