Matches in SemOpenAlex for { <https://semopenalex.org/work/W2396820821> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2396820821 endingPage "483" @default.
- W2396820821 startingPage "475" @default.
- W2396820821 abstract "Deep neural networks are a family of statistical learning models inspired by biological neural networks and are used to estimate functions that can depend on a large number of inputs and are generally unknown. In this paper we build upon the works of Katz, Bommarito and Blackman 2014, who use extremely randomized trees and feature engineering to help in predicting the behaviour of Supreme Court of United States. We explore Machine Learning techniques to achieve our goals including SVM and Neural Networks, but attain state-of-the-art accuracy with Deep Neural Networks trained using momentum methods and incorporating the Dropout technique. We explicitly use only data available prior to the decision and predict the decisions with 70.4 percent accuracy across 7,700 cases with nearly 70,000 justice votes. Our model is simple yet robust, uses far less feature vectors to train and still provides excellent accuracy, but most importantly deploys no feature engineering." @default.
- W2396820821 created "2016-06-24" @default.
- W2396820821 creator A5001997489 @default.
- W2396820821 creator A5007054388 @default.
- W2396820821 creator A5022509818 @default.
- W2396820821 creator A5060905778 @default.
- W2396820821 date "2015-01-01" @default.
- W2396820821 modified "2023-10-06" @default.
- W2396820821 title "Using Modern Neural Networks to Predict the Decisions of Supreme Court of the United States with State-of-the-Art Accuracy" @default.
- W2396820821 cites W1588441429 @default.
- W2396820821 cites W2092208920 @default.
- W2396820821 cites W2136958771 @default.
- W2396820821 cites W2152175008 @default.
- W2396820821 cites W2156909104 @default.
- W2396820821 cites W4238404964 @default.
- W2396820821 doi "https://doi.org/10.1007/978-3-319-26535-3_54" @default.
- W2396820821 hasPublicationYear "2015" @default.
- W2396820821 type Work @default.
- W2396820821 sameAs 2396820821 @default.
- W2396820821 citedByCount "4" @default.
- W2396820821 countsByYear W23968208212019 @default.
- W2396820821 countsByYear W23968208212020 @default.
- W2396820821 countsByYear W23968208212022 @default.
- W2396820821 countsByYear W23968208212023 @default.
- W2396820821 crossrefType "book-chapter" @default.
- W2396820821 hasAuthorship W2396820821A5001997489 @default.
- W2396820821 hasAuthorship W2396820821A5007054388 @default.
- W2396820821 hasAuthorship W2396820821A5022509818 @default.
- W2396820821 hasAuthorship W2396820821A5060905778 @default.
- W2396820821 hasConcept C108583219 @default.
- W2396820821 hasConcept C11413529 @default.
- W2396820821 hasConcept C119857082 @default.
- W2396820821 hasConcept C12267149 @default.
- W2396820821 hasConcept C138885662 @default.
- W2396820821 hasConcept C154945302 @default.
- W2396820821 hasConcept C17744445 @default.
- W2396820821 hasConcept C199539241 @default.
- W2396820821 hasConcept C2776145597 @default.
- W2396820821 hasConcept C2776401178 @default.
- W2396820821 hasConcept C2778272461 @default.
- W2396820821 hasConcept C2778827112 @default.
- W2396820821 hasConcept C2984842247 @default.
- W2396820821 hasConcept C41008148 @default.
- W2396820821 hasConcept C41895202 @default.
- W2396820821 hasConcept C48103436 @default.
- W2396820821 hasConcept C50644808 @default.
- W2396820821 hasConcept C84525736 @default.
- W2396820821 hasConceptScore W2396820821C108583219 @default.
- W2396820821 hasConceptScore W2396820821C11413529 @default.
- W2396820821 hasConceptScore W2396820821C119857082 @default.
- W2396820821 hasConceptScore W2396820821C12267149 @default.
- W2396820821 hasConceptScore W2396820821C138885662 @default.
- W2396820821 hasConceptScore W2396820821C154945302 @default.
- W2396820821 hasConceptScore W2396820821C17744445 @default.
- W2396820821 hasConceptScore W2396820821C199539241 @default.
- W2396820821 hasConceptScore W2396820821C2776145597 @default.
- W2396820821 hasConceptScore W2396820821C2776401178 @default.
- W2396820821 hasConceptScore W2396820821C2778272461 @default.
- W2396820821 hasConceptScore W2396820821C2778827112 @default.
- W2396820821 hasConceptScore W2396820821C2984842247 @default.
- W2396820821 hasConceptScore W2396820821C41008148 @default.
- W2396820821 hasConceptScore W2396820821C41895202 @default.
- W2396820821 hasConceptScore W2396820821C48103436 @default.
- W2396820821 hasConceptScore W2396820821C50644808 @default.
- W2396820821 hasConceptScore W2396820821C84525736 @default.
- W2396820821 hasLocation W23968208211 @default.
- W2396820821 hasOpenAccess W2396820821 @default.
- W2396820821 hasPrimaryLocation W23968208211 @default.
- W2396820821 hasRelatedWork W2475334473 @default.
- W2396820821 hasRelatedWork W2796816447 @default.
- W2396820821 hasRelatedWork W2942650110 @default.
- W2396820821 hasRelatedWork W2951581544 @default.
- W2396820821 hasRelatedWork W2968586400 @default.
- W2396820821 hasRelatedWork W2978367927 @default.
- W2396820821 hasRelatedWork W3208423683 @default.
- W2396820821 hasRelatedWork W4223943233 @default.
- W2396820821 hasRelatedWork W4281986673 @default.
- W2396820821 hasRelatedWork W4380075502 @default.
- W2396820821 isParatext "false" @default.
- W2396820821 isRetracted "false" @default.
- W2396820821 magId "2396820821" @default.
- W2396820821 workType "book-chapter" @default.