Matches in SemOpenAlex for { <https://semopenalex.org/work/W2396983503> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2396983503 abstract "The Riemann hypothesis, formulated in 1859 by Bernhard Rie- mann, states that the Riemann zeta function �(s) has all its nonreal zeros on the line Res = 1/2. Despite over a hundred years of considerable effort by numerous mathematicians, this conjecture remains one of the most intriguing unsolved problems in mathematics. On the other hand, several analogues of the Riemann hypothesis have been formulated and proved. In this chapter, we discuss Enrico Bombieri's proof of the Riemann hy- pothesis for a curve over a finite field. This problem was formulated as a conjecture by Emil Artin in his thesis of 1924. Reformulated, it states that the number of points on a curve C defined over the finite field with q ele- ments is of the order q + O( p q). The first proof was given by Andre Weil in 1942. This proof uses the intersection of divisors on C × C, making the application to the original Riemann hypothesis so far unsuccessful, because spec Z×spec Z = spec Z is one-dimensional. A new method of proof was found in 1969 by S. A. Stepanov. This method was greatly simplified and generalized by Bombieri in 1973. Bombieri's proof uses functions on C ×C, again precluding a direct transla- tion to a proof of the Riemann hypothesis itself. However, the two coordinates on C × C play different roles, one coordinate playing the geometric role of the variable of a polynomial, and the other coordinate the arithmetic role of the coefficients of this polynomial. The Frobenius automorphismof C acts on the geometric coordinate of C × C. In the last section, we make some suggestions how Nevanlinna theory could provide a model for spec Z × spec Z that is two- dimensional and carries an action of Frobenius on the geometric coordinate. The plan of this chapter is as follows. We first give a historical introduction to the Riemann hypothesis for a curve over a finite field and discuss some of the proofs that have been given. In Section 2, we define the zeta function of the curve. To prove the functional equation, we take a brief excursion to the two- variable zeta function of Pellikaan. In Section 3, we reformulate the Riemann hypothesis forC(s), and give Bombieri's proof. In the last section, we compare �C(s) with the Riemann zeta function �(s), and describe the formalism of Nevanlinna theory that might be a candidate for the framework of a translation of Bombieri's proof to the original Riemann hypothesis." @default.
- W2396983503 created "2016-06-24" @default.
- W2396983503 creator A5012400118 @default.
- W2396983503 date "2008-01-01" @default.
- W2396983503 modified "2023-09-26" @default.
- W2396983503 title "FOR FUNCTION FIELDS OVER A FINITE FIELD" @default.
- W2396983503 cites W132188839 @default.
- W2396983503 cites W1489774662 @default.
- W2396983503 cites W1491992938 @default.
- W2396983503 cites W1506763190 @default.
- W2396983503 cites W1518509928 @default.
- W2396983503 cites W1538733621 @default.
- W2396983503 cites W1553928702 @default.
- W2396983503 cites W1557415002 @default.
- W2396983503 cites W1559810343 @default.
- W2396983503 cites W1567653974 @default.
- W2396983503 cites W1574613873 @default.
- W2396983503 cites W1582679470 @default.
- W2396983503 cites W1973739383 @default.
- W2396983503 cites W1976752438 @default.
- W2396983503 cites W2035885871 @default.
- W2396983503 cites W2064003955 @default.
- W2396983503 cites W2082225085 @default.
- W2396983503 cites W2099571692 @default.
- W2396983503 cites W2147436369 @default.
- W2396983503 cites W2152043396 @default.
- W2396983503 cites W2161404136 @default.
- W2396983503 cites W2334529358 @default.
- W2396983503 cites W2481787716 @default.
- W2396983503 cites W2501237835 @default.
- W2396983503 cites W627974060 @default.
- W2396983503 hasPublicationYear "2008" @default.
- W2396983503 type Work @default.
- W2396983503 sameAs 2396983503 @default.
- W2396983503 citedByCount "0" @default.
- W2396983503 crossrefType "journal-article" @default.
- W2396983503 hasAuthorship W2396983503A5012400118 @default.
- W2396983503 hasConcept C114614502 @default.
- W2396983503 hasConcept C118615104 @default.
- W2396983503 hasConcept C127413603 @default.
- W2396983503 hasConcept C134306372 @default.
- W2396983503 hasConcept C14036430 @default.
- W2396983503 hasConcept C146978453 @default.
- W2396983503 hasConcept C199479865 @default.
- W2396983503 hasConcept C202444582 @default.
- W2396983503 hasConcept C2780990831 @default.
- W2396983503 hasConcept C33923547 @default.
- W2396983503 hasConcept C35235930 @default.
- W2396983503 hasConcept C64543145 @default.
- W2396983503 hasConcept C77926391 @default.
- W2396983503 hasConcept C78458016 @default.
- W2396983503 hasConcept C86803240 @default.
- W2396983503 hasConcept C90119067 @default.
- W2396983503 hasConcept C9652623 @default.
- W2396983503 hasConceptScore W2396983503C114614502 @default.
- W2396983503 hasConceptScore W2396983503C118615104 @default.
- W2396983503 hasConceptScore W2396983503C127413603 @default.
- W2396983503 hasConceptScore W2396983503C134306372 @default.
- W2396983503 hasConceptScore W2396983503C14036430 @default.
- W2396983503 hasConceptScore W2396983503C146978453 @default.
- W2396983503 hasConceptScore W2396983503C199479865 @default.
- W2396983503 hasConceptScore W2396983503C202444582 @default.
- W2396983503 hasConceptScore W2396983503C2780990831 @default.
- W2396983503 hasConceptScore W2396983503C33923547 @default.
- W2396983503 hasConceptScore W2396983503C35235930 @default.
- W2396983503 hasConceptScore W2396983503C64543145 @default.
- W2396983503 hasConceptScore W2396983503C77926391 @default.
- W2396983503 hasConceptScore W2396983503C78458016 @default.
- W2396983503 hasConceptScore W2396983503C86803240 @default.
- W2396983503 hasConceptScore W2396983503C90119067 @default.
- W2396983503 hasConceptScore W2396983503C9652623 @default.
- W2396983503 hasLocation W23969835031 @default.
- W2396983503 hasOpenAccess W2396983503 @default.
- W2396983503 hasPrimaryLocation W23969835031 @default.
- W2396983503 hasRelatedWork W1017826279 @default.
- W2396983503 hasRelatedWork W1504019528 @default.
- W2396983503 hasRelatedWork W2043407870 @default.
- W2396983503 hasRelatedWork W2077250795 @default.
- W2396983503 hasRelatedWork W2088223335 @default.
- W2396983503 hasRelatedWork W2157627854 @default.
- W2396983503 hasRelatedWork W2331416544 @default.
- W2396983503 hasRelatedWork W2414366310 @default.
- W2396983503 hasRelatedWork W2494429535 @default.
- W2396983503 hasRelatedWork W2503673086 @default.
- W2396983503 hasRelatedWork W25431718 @default.
- W2396983503 hasRelatedWork W2555096359 @default.
- W2396983503 hasRelatedWork W2759613259 @default.
- W2396983503 hasRelatedWork W2908107910 @default.
- W2396983503 hasRelatedWork W2949299960 @default.
- W2396983503 hasRelatedWork W2964334328 @default.
- W2396983503 hasRelatedWork W2972975243 @default.
- W2396983503 hasRelatedWork W3101726108 @default.
- W2396983503 hasRelatedWork W3136982834 @default.
- W2396983503 hasRelatedWork W656472739 @default.
- W2396983503 isParatext "false" @default.
- W2396983503 isRetracted "false" @default.
- W2396983503 magId "2396983503" @default.
- W2396983503 workType "article" @default.