Matches in SemOpenAlex for { <https://semopenalex.org/work/W2397375057> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2397375057 abstract "of polynomials R[x] over R, namely the ring ^[[x]] of formal powers series in one variable over R, is hardly ever mentioned in such a course. In most cases, it is relegated to the homework problems (or to the exercises in the textbooks), and one learns that, like R[x], R[[x]] is an integral domain provided that R is an integral domain. More surprising is to learn that, in contrast to the situation of polynomials, in R[[x]] there are many invertible elements: while the only units in R[x] are the units of R, a necessary and sufficient condition for a power series to be invertible is that its constant term be invertible in R. This fact makes the study of arithmetic in /?[[*]] simple when R is a field: the only prime element is the variable x. As might be expected, the study of prime factorization in Z[[x]] is much more interesting (and complicated), but to the best of our knowledge it is not treated in detail in the available literature. After some basic considerations, it is apparent that the question of deciding whether or not an integral power series is prime is a difficult one, and it seems worthwhile to develop criteria to determine irreducibility in Z[[x]] similar to Eisenstein's criterion for polynomials. In this note we propose an easy argument that provides us with an infinite class of irreducible power series over Z. As in the case of Eisenstein's criterion in 7Lx, our criteria give only sufficient conditions, and the question of whether or not a given power series is irreducible remains open in a vast array of cases, including quadratic polynomials. It is important to note that irreducibility in Z[x] and in Z[[x]] are, in general, un related. For instance, 6 + x + x2 is irreducible in Z[x] but can be factored in Z[[x]], while 2 + Ix + 3x2 is irreducible in Z[[x]] but equals (2 + x)(l +3x) as a polyno mial (observe that this is not a proper factorization in Z[[x]] since 1 + 3x is invert" @default.
- W2397375057 created "2016-06-24" @default.
- W2397375057 creator A5035721199 @default.
- W2397375057 creator A5045874050 @default.
- W2397375057 date "2008-06-01" @default.
- W2397375057 modified "2023-09-23" @default.
- W2397375057 title "Arithmetic in the Ring of Formal Power Series with Integer Coefficients" @default.
- W2397375057 cites W2103500750 @default.
- W2397375057 doi "https://doi.org/10.1080/00029890.2008.11920560" @default.
- W2397375057 hasPublicationYear "2008" @default.
- W2397375057 type Work @default.
- W2397375057 sameAs 2397375057 @default.
- W2397375057 citedByCount "7" @default.
- W2397375057 countsByYear W23973750572012 @default.
- W2397375057 countsByYear W23973750572014 @default.
- W2397375057 countsByYear W23973750572020 @default.
- W2397375057 countsByYear W23973750572021 @default.
- W2397375057 crossrefType "journal-article" @default.
- W2397375057 hasAuthorship W2397375057A5035721199 @default.
- W2397375057 hasAuthorship W2397375057A5045874050 @default.
- W2397375057 hasConcept C11413529 @default.
- W2397375057 hasConcept C114614502 @default.
- W2397375057 hasConcept C118615104 @default.
- W2397375057 hasConcept C134306372 @default.
- W2397375057 hasConcept C143724316 @default.
- W2397375057 hasConcept C151730666 @default.
- W2397375057 hasConcept C151746172 @default.
- W2397375057 hasConcept C178790620 @default.
- W2397375057 hasConcept C184992742 @default.
- W2397375057 hasConcept C185592680 @default.
- W2397375057 hasConcept C187834632 @default.
- W2397375057 hasConcept C199360897 @default.
- W2397375057 hasConcept C202444582 @default.
- W2397375057 hasConcept C2776823524 @default.
- W2397375057 hasConcept C2780378348 @default.
- W2397375057 hasConcept C33923547 @default.
- W2397375057 hasConcept C41008148 @default.
- W2397375057 hasConcept C73905626 @default.
- W2397375057 hasConcept C86803240 @default.
- W2397375057 hasConcept C96442724 @default.
- W2397375057 hasConcept C9652623 @default.
- W2397375057 hasConcept C97137487 @default.
- W2397375057 hasConcept C98486379 @default.
- W2397375057 hasConceptScore W2397375057C11413529 @default.
- W2397375057 hasConceptScore W2397375057C114614502 @default.
- W2397375057 hasConceptScore W2397375057C118615104 @default.
- W2397375057 hasConceptScore W2397375057C134306372 @default.
- W2397375057 hasConceptScore W2397375057C143724316 @default.
- W2397375057 hasConceptScore W2397375057C151730666 @default.
- W2397375057 hasConceptScore W2397375057C151746172 @default.
- W2397375057 hasConceptScore W2397375057C178790620 @default.
- W2397375057 hasConceptScore W2397375057C184992742 @default.
- W2397375057 hasConceptScore W2397375057C185592680 @default.
- W2397375057 hasConceptScore W2397375057C187834632 @default.
- W2397375057 hasConceptScore W2397375057C199360897 @default.
- W2397375057 hasConceptScore W2397375057C202444582 @default.
- W2397375057 hasConceptScore W2397375057C2776823524 @default.
- W2397375057 hasConceptScore W2397375057C2780378348 @default.
- W2397375057 hasConceptScore W2397375057C33923547 @default.
- W2397375057 hasConceptScore W2397375057C41008148 @default.
- W2397375057 hasConceptScore W2397375057C73905626 @default.
- W2397375057 hasConceptScore W2397375057C86803240 @default.
- W2397375057 hasConceptScore W2397375057C96442724 @default.
- W2397375057 hasConceptScore W2397375057C9652623 @default.
- W2397375057 hasConceptScore W2397375057C97137487 @default.
- W2397375057 hasConceptScore W2397375057C98486379 @default.
- W2397375057 hasLocation W23973750571 @default.
- W2397375057 hasOpenAccess W2397375057 @default.
- W2397375057 hasPrimaryLocation W23973750571 @default.
- W2397375057 hasRelatedWork W1004027994 @default.
- W2397375057 hasRelatedWork W1623719697 @default.
- W2397375057 hasRelatedWork W1990664192 @default.
- W2397375057 hasRelatedWork W2032996020 @default.
- W2397375057 hasRelatedWork W2042388269 @default.
- W2397375057 hasRelatedWork W2077117201 @default.
- W2397375057 hasRelatedWork W2079794257 @default.
- W2397375057 hasRelatedWork W2081290340 @default.
- W2397375057 hasRelatedWork W2129388296 @default.
- W2397375057 hasRelatedWork W2277914854 @default.
- W2397375057 hasRelatedWork W2312472115 @default.
- W2397375057 hasRelatedWork W2317230655 @default.
- W2397375057 hasRelatedWork W2319716451 @default.
- W2397375057 hasRelatedWork W2321007863 @default.
- W2397375057 hasRelatedWork W2325902695 @default.
- W2397375057 hasRelatedWork W2407719647 @default.
- W2397375057 hasRelatedWork W2605638484 @default.
- W2397375057 hasRelatedWork W2951498402 @default.
- W2397375057 hasRelatedWork W2953273942 @default.
- W2397375057 hasRelatedWork W3135641670 @default.
- W2397375057 isParatext "false" @default.
- W2397375057 isRetracted "false" @default.
- W2397375057 magId "2397375057" @default.
- W2397375057 workType "article" @default.