Matches in SemOpenAlex for { <https://semopenalex.org/work/W2397451728> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2397451728 endingPage "784" @default.
- W2397451728 startingPage "778" @default.
- W2397451728 abstract "It is hard to have good accuracy for economic forecast because most of the machine learning methods rely on large amounts of data to make predication and the historical data is not enough. Even though for ten years' annual data, it has only ten data. This article tries to improve the economic forecast accuracy using a Mega-fuzzification method for small data set learning based on neuro-fuzzy. Methods used include virtual data concept, data continualization, data effect estimation, fuzzy neural network, and data range external expansion. A case of Taiwan's monitor indicator forecast is presented also in this study. The results show that the proposed method can indeed improve the accuracy of the economic forecast." @default.
- W2397451728 created "2016-06-24" @default.
- W2397451728 creator A5044084245 @default.
- W2397451728 date "2006-07-10" @default.
- W2397451728 modified "2023-09-23" @default.
- W2397451728 title "Using the small data set learning for the monitor indicator forecast" @default.
- W2397451728 cites W1538967237 @default.
- W2397451728 cites W1546328101 @default.
- W2397451728 cites W1975457564 @default.
- W2397451728 cites W2019207321 @default.
- W2397451728 cites W2023354766 @default.
- W2397451728 cites W2046738003 @default.
- W2397451728 cites W2079325629 @default.
- W2397451728 cites W2089534012 @default.
- W2397451728 cites W2094631910 @default.
- W2397451728 cites W2142197202 @default.
- W2397451728 cites W2165100383 @default.
- W2397451728 cites W2167025280 @default.
- W2397451728 cites W2306863253 @default.
- W2397451728 cites W2633139931 @default.
- W2397451728 cites W2737686460 @default.
- W2397451728 hasPublicationYear "2006" @default.
- W2397451728 type Work @default.
- W2397451728 sameAs 2397451728 @default.
- W2397451728 citedByCount "0" @default.
- W2397451728 crossrefType "proceedings-article" @default.
- W2397451728 hasAuthorship W2397451728A5044084245 @default.
- W2397451728 hasConcept C119857082 @default.
- W2397451728 hasConcept C124101348 @default.
- W2397451728 hasConcept C127413603 @default.
- W2397451728 hasConcept C146978453 @default.
- W2397451728 hasConcept C154945302 @default.
- W2397451728 hasConcept C177264268 @default.
- W2397451728 hasConcept C199360897 @default.
- W2397451728 hasConcept C204323151 @default.
- W2397451728 hasConcept C41008148 @default.
- W2397451728 hasConcept C42011625 @default.
- W2397451728 hasConcept C50644808 @default.
- W2397451728 hasConcept C58166 @default.
- W2397451728 hasConcept C58489278 @default.
- W2397451728 hasConcept C67186912 @default.
- W2397451728 hasConcept C77088390 @default.
- W2397451728 hasConceptScore W2397451728C119857082 @default.
- W2397451728 hasConceptScore W2397451728C124101348 @default.
- W2397451728 hasConceptScore W2397451728C127413603 @default.
- W2397451728 hasConceptScore W2397451728C146978453 @default.
- W2397451728 hasConceptScore W2397451728C154945302 @default.
- W2397451728 hasConceptScore W2397451728C177264268 @default.
- W2397451728 hasConceptScore W2397451728C199360897 @default.
- W2397451728 hasConceptScore W2397451728C204323151 @default.
- W2397451728 hasConceptScore W2397451728C41008148 @default.
- W2397451728 hasConceptScore W2397451728C42011625 @default.
- W2397451728 hasConceptScore W2397451728C50644808 @default.
- W2397451728 hasConceptScore W2397451728C58166 @default.
- W2397451728 hasConceptScore W2397451728C58489278 @default.
- W2397451728 hasConceptScore W2397451728C67186912 @default.
- W2397451728 hasConceptScore W2397451728C77088390 @default.
- W2397451728 hasOpenAccess W2397451728 @default.
- W2397451728 hasRelatedWork W1491402884 @default.
- W2397451728 hasRelatedWork W1529963239 @default.
- W2397451728 hasRelatedWork W1556210070 @default.
- W2397451728 hasRelatedWork W1557470914 @default.
- W2397451728 hasRelatedWork W1967734986 @default.
- W2397451728 hasRelatedWork W1987207550 @default.
- W2397451728 hasRelatedWork W1994342059 @default.
- W2397451728 hasRelatedWork W2074196524 @default.
- W2397451728 hasRelatedWork W2090675528 @default.
- W2397451728 hasRelatedWork W2115662163 @default.
- W2397451728 hasRelatedWork W2130519559 @default.
- W2397451728 hasRelatedWork W2374085585 @default.
- W2397451728 hasRelatedWork W2385878510 @default.
- W2397451728 hasRelatedWork W2921679040 @default.
- W2397451728 hasRelatedWork W3189589215 @default.
- W2397451728 hasRelatedWork W977807926 @default.
- W2397451728 hasRelatedWork W1545710019 @default.
- W2397451728 hasRelatedWork W2132080111 @default.
- W2397451728 hasRelatedWork W21899573 @default.
- W2397451728 hasRelatedWork W3121706288 @default.
- W2397451728 isParatext "false" @default.
- W2397451728 isRetracted "false" @default.
- W2397451728 magId "2397451728" @default.
- W2397451728 workType "article" @default.