Matches in SemOpenAlex for { <https://semopenalex.org/work/W2397940897> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2397940897 endingPage "545" @default.
- W2397940897 startingPage "539" @default.
- W2397940897 abstract "Among various methods of artificial neural networks (ANNs) and learning algorithms, self-organizing map (SOM) is one of the most popular models. The aim of this study is to classify features influencing the biological yield and yield of wheat using SOM algorithm. In SOM, according to qualitative data, the clustering tendency of yield and biological yield of wheat were investigated using 11142 data from 16 features. Data was collected from the literatures on the subject of wheat in Iran that was existed in http://sid.ir website. Results showed that when biological yield was as output, K with soil pH, irrigation regime with 1000-kernel weight and organic content (OC) with grain/spike were related to each other closely. Moreover, grain/spike and OC had closer relationship to biological yield. In contrast, negative relationship was observed between soil pH (r= -0.47) and HI (r= -0.61) with biological yield. When wheat grain yield was output of SOM model, K with soil pH, and P with OC was related to each other closely. Overall, grain/spike, P and OC were much closer related to crop yield than other parameters. Similar to biological yield, labels map showed that data classified in three classes for wheat yield and the top four rows of U-matrix were placed in class A. A clear separation was observed among class A with B and C. The characteristics of each group in the study area showed that group 2 with 0.784 (kg/m 2 ) had the highest yield than group 1 (0.241 kg/m 2 ) and group 3 (0.401 kg/m 2 ) so that in group 2, the amount of P (0.003 kg/m 2 ), OC (0.47%), pH (7.78), rainfall (492.45 mm), grain/spike (43.71) and spike/m 2 (668.21) and HI (37.53%) were higher than the other groups and related to yield directly. Our results showed that among the yield components, grain/spike was the most important features contributing to grain yield than spike/m 2 and 1000-kernel weight using SOM." @default.
- W2397940897 created "2016-06-24" @default.
- W2397940897 creator A5022351149 @default.
- W2397940897 creator A5069099470 @default.
- W2397940897 date "2016-04-20" @default.
- W2397940897 modified "2023-09-25" @default.
- W2397940897 title "The self-organizing map for determination of main features related to biological yield and yield of wheat" @default.
- W2397940897 cites W1483072991 @default.
- W2397940897 cites W1518498072 @default.
- W2397940897 cites W1595780788 @default.
- W2397940897 cites W1679913846 @default.
- W2397940897 cites W1901005171 @default.
- W2397940897 cites W2002698635 @default.
- W2397940897 cites W2005418590 @default.
- W2397940897 cites W2008167065 @default.
- W2397940897 cites W2021974446 @default.
- W2397940897 cites W2037620393 @default.
- W2397940897 cites W2041452796 @default.
- W2397940897 cites W2074126466 @default.
- W2397940897 cites W2089752948 @default.
- W2397940897 cites W2106142358 @default.
- W2397940897 cites W2111958804 @default.
- W2397940897 cites W2142805775 @default.
- W2397940897 cites W2147713768 @default.
- W2397940897 cites W2148572862 @default.
- W2397940897 cites W2188849404 @default.
- W2397940897 cites W2300303054 @default.
- W2397940897 cites W2768130143 @default.
- W2397940897 cites W3207342693 @default.
- W2397940897 cites W8327408 @default.
- W2397940897 doi "https://doi.org/10.21475/ajcs.2016.10.04.p7336x" @default.
- W2397940897 hasPublicationYear "2016" @default.
- W2397940897 type Work @default.
- W2397940897 sameAs 2397940897 @default.
- W2397940897 citedByCount "1" @default.
- W2397940897 countsByYear W23979408972018 @default.
- W2397940897 crossrefType "journal-article" @default.
- W2397940897 hasAuthorship W2397940897A5022351149 @default.
- W2397940897 hasAuthorship W2397940897A5069099470 @default.
- W2397940897 hasConcept C126343540 @default.
- W2397940897 hasConcept C134121241 @default.
- W2397940897 hasConcept C191897082 @default.
- W2397940897 hasConcept C192562407 @default.
- W2397940897 hasConcept C6557445 @default.
- W2397940897 hasConcept C86803240 @default.
- W2397940897 hasConceptScore W2397940897C126343540 @default.
- W2397940897 hasConceptScore W2397940897C134121241 @default.
- W2397940897 hasConceptScore W2397940897C191897082 @default.
- W2397940897 hasConceptScore W2397940897C192562407 @default.
- W2397940897 hasConceptScore W2397940897C6557445 @default.
- W2397940897 hasConceptScore W2397940897C86803240 @default.
- W2397940897 hasIssue "04" @default.
- W2397940897 hasLocation W23979408971 @default.
- W2397940897 hasOpenAccess W2397940897 @default.
- W2397940897 hasPrimaryLocation W23979408971 @default.
- W2397940897 hasRelatedWork W1854224015 @default.
- W2397940897 hasRelatedWork W1929427705 @default.
- W2397940897 hasRelatedWork W2127528693 @default.
- W2397940897 hasRelatedWork W2191151697 @default.
- W2397940897 hasRelatedWork W2199973162 @default.
- W2397940897 hasRelatedWork W2258085771 @default.
- W2397940897 hasRelatedWork W2618988194 @default.
- W2397940897 hasRelatedWork W2755151967 @default.
- W2397940897 hasRelatedWork W3216931762 @default.
- W2397940897 hasRelatedWork W755309895 @default.
- W2397940897 hasVolume "10" @default.
- W2397940897 isParatext "false" @default.
- W2397940897 isRetracted "false" @default.
- W2397940897 magId "2397940897" @default.
- W2397940897 workType "article" @default.