Matches in SemOpenAlex for { <https://semopenalex.org/work/W2398085228> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2398085228 abstract "Emotion-Based Reinforcement Learning Woo-Young Ahn 1 (ahnw@indiana.edu) Olga Rass 1 (rasso@indiana.edu) Yong-Wook Shin 2 (shaman@amc.seoul.kr) Jerome R. Busemeyer 1 (jbusemey@indiana.edu) Joshua W. Brown 1 (jwmbrown@indiana.edu) Brian F. O’Donnell 1 (bodonnel@indiana.edu) 1 Department of Psychological and Brain Sciences, Indiana University of Psychiatry, Ulsan University School of Medicine 2 Department Abstract rather than to maximize expected return. In decision affect theory, our emotional responses (R) are based on obtained outcomes, relevant comparisons, and beliefs about the likeli- hood of the outcomes: Studies have shown that counterfactual reasoning can shape human decisions. However, there is a gap in the litera- ture between counterfactual choices in description-based and experience-based paradigms. While studies using description- based paradigms suggest participants maximize expected sub- jective emotion, studies using experience-based paradigms as- sume that participants learn the values of options and se- lect what maximizes expected utility. In this study, we used computational modeling to test 1) whether participants make emotion-based decisions in experience-based paradigms, and 2) whether the impact of regret depends on its degree of unex- pectedness as suggested by the current regret theory. The re- sults suggest that 1) participants make emotion-based choices even in experience-based paradigms, and 2) the impact of re- gret is greater when it is expected than when it is unexpected. These results challenge the current theory of regret and suggest that reinforcement learning models may need to use counter- factual value functions when full information is provided. R Chosen Outcome Utility + Regret / Rejoice + Disappointment / Elation All counterfactual terms (regret, rejoice, disappointment, and elation) are weighted by their unexpectedness. Decision af- fect theory effectively explained various experimental results (Mellers et al., 1999) and Coricelli et al. (2005) used a mod- ified version of the theory to examine the neural correlates of regret using description-based paradigms. 1 Several studies have examined counterfactual decision- making using experience-based paradigms as well (Lohrenz, McCabe, Camerer, & Montague, 2007; Boorman, Behrens, & Rushworth, 2011; Hayden, Pearson, & Platt, 2009; Yechiam & Rakow, 2011). Although models used in the studies differ slightly from each other, all previous studies used reinforce- ment learning models, which assume that participants learn about chosen and foregone outcomes from trial-by-trial expe- rience and then choose an option that has the highest expected value. This study was developed from this gap in the liter- ature: to explain choice behaviors in description-based paradigms with full information, researchers have assumed participants would make emotion-based choices. To explain choice behaviors in experience-based paradigms, researchers have assumed that participants learn the obtained and fore- gone payoffs and do not make emotion-based choices. We tested whether individuals make emotion-based choices in experience-based paradigms by building computational mod- els for all competing hypotheses. This approach allowed us to quantitatively compare hypotheses in a rigorous way. Another aim of the study was to test whether regret would be weighted by its unexpectedness (i.e., surprising- ness). Mellers et al. (1999) claimed that “...unexpected out- Keywords: Decision making; Bayesian modeling; mathemat- ical modeling; regret; reinforcement learning. Introduction In our daily lives, we constantly face decisions to make and assess the costs and benefits of possible options (e.g., “Should I buy a lottery or just buy a snack with this money?”, “Should I buy Apple or Google stock?”). Usually we know only the outcome of our choices. On rare occasions, we also know what would have happened if we had made different choices (e.g., stock market). Having ‘complete feedback’ (or full in- formation) under risk or uncertainty can evoke strong emo- tions such as regret or disappointment that are triggered by our capacity to reason counterfactually. The effects of counterfactual reasoning have received much attention, and several theories have been proposed. A grow- ing consensus suggests that disappointment and elation are elicited by comparison between different states (e.g., “my grant was not funded...”) whereas regret and rejoice come from comparison between different choices (e.g., “I should have married another person...”). Also, the unique aspect of regret is a feeling of responsibility that comes with negative outcomes from choices. Among several theories of counterfactual decision-making, decision affect theory is regarded as one of the leading models (Mellers, Schwartz, & Ritov, 1999). Decision affect theory assumes that individuals make emotion-based choices and want to maximize subjective expected pleasure (or emotion) 1 In description-based paradigms, the outcomes of all options and their probabilities are provided to participants and participants rarely receive feedback. In experience-based paradigms, participants must learn the outcomes or their probabilities from their personal experi- ence (Hertwig, Barren, Weber, & Erev, 2004)." @default.
- W2398085228 created "2016-06-24" @default.
- W2398085228 creator A5001298940 @default.
- W2398085228 creator A5002631307 @default.
- W2398085228 creator A5009768341 @default.
- W2398085228 creator A5025154104 @default.
- W2398085228 creator A5044795146 @default.
- W2398085228 creator A5083469229 @default.
- W2398085228 date "2012-01-01" @default.
- W2398085228 modified "2023-09-23" @default.
- W2398085228 title "Emotion-Based Reinforcement Learning" @default.
- W2398085228 cites W160989634 @default.
- W2398085228 cites W1973881715 @default.
- W2398085228 cites W2012319162 @default.
- W2398085228 cites W2029537564 @default.
- W2398085228 cites W2035507141 @default.
- W2398085228 cites W2043071382 @default.
- W2398085228 cites W2068613599 @default.
- W2398085228 cites W2073698878 @default.
- W2398085228 cites W2088490356 @default.
- W2398085228 cites W2107091977 @default.
- W2398085228 cites W2125458573 @default.
- W2398085228 cites W2126908031 @default.
- W2398085228 cites W2132726456 @default.
- W2398085228 cites W2134012062 @default.
- W2398085228 cites W2163340182 @default.
- W2398085228 cites W2168175751 @default.
- W2398085228 cites W2319178748 @default.
- W2398085228 cites W3124219466 @default.
- W2398085228 cites W3124896223 @default.
- W2398085228 hasPublicationYear "2012" @default.
- W2398085228 type Work @default.
- W2398085228 sameAs 2398085228 @default.
- W2398085228 citedByCount "2" @default.
- W2398085228 countsByYear W23980852282013 @default.
- W2398085228 countsByYear W23980852282020 @default.
- W2398085228 crossrefType "journal-article" @default.
- W2398085228 hasAuthorship W2398085228A5001298940 @default.
- W2398085228 hasAuthorship W2398085228A5002631307 @default.
- W2398085228 hasAuthorship W2398085228A5009768341 @default.
- W2398085228 hasAuthorship W2398085228A5025154104 @default.
- W2398085228 hasAuthorship W2398085228A5044795146 @default.
- W2398085228 hasAuthorship W2398085228A5083469229 @default.
- W2398085228 hasConcept C108650721 @default.
- W2398085228 hasConcept C119857082 @default.
- W2398085228 hasConcept C144237770 @default.
- W2398085228 hasConcept C154945302 @default.
- W2398085228 hasConcept C15744967 @default.
- W2398085228 hasConcept C180747234 @default.
- W2398085228 hasConcept C205706631 @default.
- W2398085228 hasConcept C2776291640 @default.
- W2398085228 hasConcept C33923547 @default.
- W2398085228 hasConcept C41008148 @default.
- W2398085228 hasConcept C50817715 @default.
- W2398085228 hasConcept C77805123 @default.
- W2398085228 hasConcept C97541855 @default.
- W2398085228 hasConceptScore W2398085228C108650721 @default.
- W2398085228 hasConceptScore W2398085228C119857082 @default.
- W2398085228 hasConceptScore W2398085228C144237770 @default.
- W2398085228 hasConceptScore W2398085228C154945302 @default.
- W2398085228 hasConceptScore W2398085228C15744967 @default.
- W2398085228 hasConceptScore W2398085228C180747234 @default.
- W2398085228 hasConceptScore W2398085228C205706631 @default.
- W2398085228 hasConceptScore W2398085228C2776291640 @default.
- W2398085228 hasConceptScore W2398085228C33923547 @default.
- W2398085228 hasConceptScore W2398085228C41008148 @default.
- W2398085228 hasConceptScore W2398085228C50817715 @default.
- W2398085228 hasConceptScore W2398085228C77805123 @default.
- W2398085228 hasConceptScore W2398085228C97541855 @default.
- W2398085228 hasIssue "34" @default.
- W2398085228 hasLocation W23980852281 @default.
- W2398085228 hasOpenAccess W2398085228 @default.
- W2398085228 hasPrimaryLocation W23980852281 @default.
- W2398085228 hasRelatedWork W1531965901 @default.
- W2398085228 hasRelatedWork W1583663013 @default.
- W2398085228 hasRelatedWork W1583681530 @default.
- W2398085228 hasRelatedWork W1983202944 @default.
- W2398085228 hasRelatedWork W201834776 @default.
- W2398085228 hasRelatedWork W2045049263 @default.
- W2398085228 hasRelatedWork W2066583597 @default.
- W2398085228 hasRelatedWork W2077822588 @default.
- W2398085228 hasRelatedWork W2109267419 @default.
- W2398085228 hasRelatedWork W2123138216 @default.
- W2398085228 hasRelatedWork W2124995688 @default.
- W2398085228 hasRelatedWork W2159165621 @default.
- W2398085228 hasRelatedWork W2168447411 @default.
- W2398085228 hasRelatedWork W2199221153 @default.
- W2398085228 hasRelatedWork W2259851118 @default.
- W2398085228 hasRelatedWork W2577643890 @default.
- W2398085228 hasRelatedWork W2591508098 @default.
- W2398085228 hasRelatedWork W2978504157 @default.
- W2398085228 hasRelatedWork W3121216742 @default.
- W2398085228 hasRelatedWork W330786909 @default.
- W2398085228 hasVolume "34" @default.
- W2398085228 isParatext "false" @default.
- W2398085228 isRetracted "false" @default.
- W2398085228 magId "2398085228" @default.
- W2398085228 workType "article" @default.