Matches in SemOpenAlex for { <https://semopenalex.org/work/W2398097497> ?p ?o ?g. }
- W2398097497 endingPage "186" @default.
- W2398097497 startingPage "174" @default.
- W2398097497 abstract "Abstract Deserts accumulate soluble salts from atmospheric deposition that impact human health, are a source of nutrients for organisms, and provide insight into how landscapes evolved on Earth and Mars. We quantified perchlorate, nitrate, and iodate abundances and co-occurrence in terrestrial deserts to identify fundamental controls on soluble salt deposition and post-depositional cycling. Soils and nitrate deposits were examined in Death Valley, USA; Atacama Desert, Chile; Kumtag Desert, China; and along an environmental gradient in the Transantarctic Mountains, Antarctica. Concentrations of soluble salts were highest in the Transantarctic Mountains and Atacama Desert, where stable, hyper-arid landscapes accumulate atmospheric salts over million-year time scales. Average nitrate concentrations of 61.3 g kg − 1 in the Transantarctic Mountains and 53.0 g kg − 1 in the Atacama Desert were significantly greater than respective averages of 8.60 g kg − 1 and 5.14 g kg − 1 in Kumtag Desert and Death Valley. Perchlorate and iodate concentrations in the Atacama Desert averaged 206 mg kg − 1 and 344 mg kg − 1 , respectively, which were two to three orders of magnitude greater than in Antarctica and other sites. Our findings suggest that local processes in the Atacama Desert result either in higher rates of perchlorate and iodate deposition, or a greater preservation of these salts relative to nitrate when compared to Antarctic landscapes. Lower salt concentrations in the Death Valley and Kumtag Desert deposits likely result from relatively wet present-day and paleoclimatic conditions, a more active geologic history, and a greater likelihood that biocycling disrupted long-term salt accumulation. Associations of perchlorate and nitrate were significantly higher than iodate-nitrate and iodate-perchlorate correlations in the four deserts. Perchlorate-nitrate relationships ranged from insignificant to highly significant with stronger correlations in the Atacama Desert and Kumtag Desert compared to the Transantarctic Mountains and Death Valley. Weaker geochemical associations with iodate were attributed to differences in local deposition rates or post-depositional cycling. Interestingly, relationships among perchlorate, nitrate, and iodate were generally stronger when examined by site within each desert compared to analyzing the soils for each desert as a whole, suggesting more localized controls on soluble salt preservation. We conclude that soluble salts vary in concentration and type across Earth's deserts as a result of present-day environment, paleoclimate conditions, biocycling, and geologic age." @default.
- W2398097497 created "2016-06-24" @default.
- W2398097497 creator A5028076782 @default.
- W2398097497 creator A5030047693 @default.
- W2398097497 creator A5030879820 @default.
- W2398097497 creator A5030961835 @default.
- W2398097497 creator A5038836690 @default.
- W2398097497 creator A5044490750 @default.
- W2398097497 creator A5046558580 @default.
- W2398097497 creator A5047079491 @default.
- W2398097497 creator A5083657673 @default.
- W2398097497 creator A5089123392 @default.
- W2398097497 date "2016-11-01" @default.
- W2398097497 modified "2023-10-16" @default.
- W2398097497 title "Nitrate, perchlorate, and iodate co-occur in coastal and inland deserts on Earth" @default.
- W2398097497 cites W1568437488 @default.
- W2398097497 cites W1661939691 @default.
- W2398097497 cites W1748094370 @default.
- W2398097497 cites W1785660519 @default.
- W2398097497 cites W1852441971 @default.
- W2398097497 cites W1964487556 @default.
- W2398097497 cites W1965540535 @default.
- W2398097497 cites W1965583470 @default.
- W2398097497 cites W1967572107 @default.
- W2398097497 cites W1968379998 @default.
- W2398097497 cites W1972897831 @default.
- W2398097497 cites W1975994497 @default.
- W2398097497 cites W1977686730 @default.
- W2398097497 cites W1979693785 @default.
- W2398097497 cites W1982282079 @default.
- W2398097497 cites W1992015862 @default.
- W2398097497 cites W1992560446 @default.
- W2398097497 cites W1994049320 @default.
- W2398097497 cites W1994956471 @default.
- W2398097497 cites W1996712189 @default.
- W2398097497 cites W1999832318 @default.
- W2398097497 cites W1999850555 @default.
- W2398097497 cites W2002106536 @default.
- W2398097497 cites W2002311269 @default.
- W2398097497 cites W2002824385 @default.
- W2398097497 cites W2008101666 @default.
- W2398097497 cites W2008534879 @default.
- W2398097497 cites W2008666211 @default.
- W2398097497 cites W2014992726 @default.
- W2398097497 cites W2019868690 @default.
- W2398097497 cites W2020894035 @default.
- W2398097497 cites W2033471326 @default.
- W2398097497 cites W2035648841 @default.
- W2398097497 cites W2040656572 @default.
- W2398097497 cites W2042434711 @default.
- W2398097497 cites W2043797091 @default.
- W2398097497 cites W2045284443 @default.
- W2398097497 cites W2046893063 @default.
- W2398097497 cites W2047821352 @default.
- W2398097497 cites W2059239673 @default.
- W2398097497 cites W2060110629 @default.
- W2398097497 cites W2060604658 @default.
- W2398097497 cites W2066317835 @default.
- W2398097497 cites W2069642818 @default.
- W2398097497 cites W2072887130 @default.
- W2398097497 cites W2073220269 @default.
- W2398097497 cites W2074159617 @default.
- W2398097497 cites W2077523144 @default.
- W2398097497 cites W2080924811 @default.
- W2398097497 cites W2086131722 @default.
- W2398097497 cites W2086286700 @default.
- W2398097497 cites W2091240280 @default.
- W2398097497 cites W2095948669 @default.
- W2398097497 cites W2096610212 @default.
- W2398097497 cites W2099522004 @default.
- W2398097497 cites W2100022855 @default.
- W2398097497 cites W2114514935 @default.
- W2398097497 cites W2122545375 @default.
- W2398097497 cites W2124691691 @default.
- W2398097497 cites W2129082518 @default.
- W2398097497 cites W2136283672 @default.
- W2398097497 cites W2140901511 @default.
- W2398097497 cites W2146864290 @default.
- W2398097497 cites W2149352713 @default.
- W2398097497 cites W2152484889 @default.
- W2398097497 cites W2159876814 @default.
- W2398097497 cites W2290311880 @default.
- W2398097497 cites W2331470990 @default.
- W2398097497 doi "https://doi.org/10.1016/j.chemgeo.2016.05.023" @default.
- W2398097497 hasPublicationYear "2016" @default.
- W2398097497 type Work @default.
- W2398097497 sameAs 2398097497 @default.
- W2398097497 citedByCount "32" @default.
- W2398097497 countsByYear W23980974972017 @default.
- W2398097497 countsByYear W23980974972018 @default.
- W2398097497 countsByYear W23980974972019 @default.
- W2398097497 countsByYear W23980974972020 @default.
- W2398097497 countsByYear W23980974972021 @default.
- W2398097497 countsByYear W23980974972022 @default.
- W2398097497 countsByYear W23980974972023 @default.
- W2398097497 crossrefType "journal-article" @default.
- W2398097497 hasAuthorship W2398097497A5028076782 @default.
- W2398097497 hasAuthorship W2398097497A5030047693 @default.