Matches in SemOpenAlex for { <https://semopenalex.org/work/W2398242302> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2398242302 abstract "Experimental research over the last two decades has shown that the anatomical connectivity among neurons is largely non-random across brain areas. This complex organisation shapes the flow of information, giving rise to specific pathways and motifs, which are ultimately responsible for processes like emotions, cognitive functions and behaviour, just to mention few. Due to the spectacular progress of technology, the study of the brain wiring diagram, known as connectomics, has received considerable attention in recent years, resulting in the proliferation of large data sets. From one side, this adds a significant contribution towards a better understanding of the complex processes that take place in the brain. On the other side, however, analysing such large connectivities is a hard task that has not yet found a satisfactory solution. Particular evidence has been found for bidirectional motifs,occurring when two neurons project onto each other via connections of equal strength, and unidirectional motifs, when one of the two connections is dominant. These specific motifs were found to correlate with short-term synaptic plasticity properties, which are related to resources availability for signal transmission. The aim of this thesis is to add a contribution to the ongoing efforts spent on answering the two main questions related to motif evidence: How can we satisfactory detect and measure motifs in large networks and why do they have the characteristics that we observe? Following existing literature, we hypothesise that bidirectional and unidirectional motifs appear as a consequence of learning processes, which move the distribution of the synaptic connections away from randomness through activity dependent synaptic plasticity. Based on this, we introduce a symmetry measure for global connectivity and a statistics-based heuristic algorithm for directed and weighted graphs that is able to detect overlapping bidirectional communities within large networks. On the other side, to address the why question we introduce an error-driven learning framework for short-term plasticity that acts jointly with Spike-Timing Dependent Plasticity, a well-known learning mechanism for long-term plasticity: By allowing synapses to change their properties,neurons are able to adapt their own activity depending on an error signal. This results in more rich dynamics and also, provided that the learning mechanism is target-specific, leads to specialised groups of synapses projecting onto functionally different targets, qualitatively replicating the experimental results of Wang and collaborators in 2006." @default.
- W2398242302 created "2016-06-24" @default.
- W2398242302 creator A5087879215 @default.
- W2398242302 date "2016-03-01" @default.
- W2398242302 modified "2023-09-28" @default.
- W2398242302 title "Investigating connectivity in brain-like networks" @default.
- W2398242302 hasPublicationYear "2016" @default.
- W2398242302 type Work @default.
- W2398242302 sameAs 2398242302 @default.
- W2398242302 citedByCount "1" @default.
- W2398242302 countsByYear W23982423022018 @default.
- W2398242302 crossrefType "dissertation" @default.
- W2398242302 hasAuthorship W2398242302A5087879215 @default.
- W2398242302 hasConcept C105795698 @default.
- W2398242302 hasConcept C125112378 @default.
- W2398242302 hasConcept C136764020 @default.
- W2398242302 hasConcept C15744967 @default.
- W2398242302 hasConcept C169760540 @default.
- W2398242302 hasConcept C188147891 @default.
- W2398242302 hasConcept C2779097318 @default.
- W2398242302 hasConcept C3018011982 @default.
- W2398242302 hasConcept C33923547 @default.
- W2398242302 hasConcept C34947359 @default.
- W2398242302 hasConcept C41008148 @default.
- W2398242302 hasConcept C45715564 @default.
- W2398242302 hasConceptScore W2398242302C105795698 @default.
- W2398242302 hasConceptScore W2398242302C125112378 @default.
- W2398242302 hasConceptScore W2398242302C136764020 @default.
- W2398242302 hasConceptScore W2398242302C15744967 @default.
- W2398242302 hasConceptScore W2398242302C169760540 @default.
- W2398242302 hasConceptScore W2398242302C188147891 @default.
- W2398242302 hasConceptScore W2398242302C2779097318 @default.
- W2398242302 hasConceptScore W2398242302C3018011982 @default.
- W2398242302 hasConceptScore W2398242302C33923547 @default.
- W2398242302 hasConceptScore W2398242302C34947359 @default.
- W2398242302 hasConceptScore W2398242302C41008148 @default.
- W2398242302 hasConceptScore W2398242302C45715564 @default.
- W2398242302 hasLocation W23982423021 @default.
- W2398242302 hasOpenAccess W2398242302 @default.
- W2398242302 hasPrimaryLocation W23982423021 @default.
- W2398242302 hasRelatedWork W1212823 @default.
- W2398242302 hasRelatedWork W1499037095 @default.
- W2398242302 hasRelatedWork W1554172518 @default.
- W2398242302 hasRelatedWork W1972847603 @default.
- W2398242302 hasRelatedWork W1974733263 @default.
- W2398242302 hasRelatedWork W1988516611 @default.
- W2398242302 hasRelatedWork W2048608067 @default.
- W2398242302 hasRelatedWork W2092684354 @default.
- W2398242302 hasRelatedWork W2120985892 @default.
- W2398242302 hasRelatedWork W2245858307 @default.
- W2398242302 hasRelatedWork W2299021831 @default.
- W2398242302 hasRelatedWork W2751355013 @default.
- W2398242302 hasRelatedWork W2806558297 @default.
- W2398242302 hasRelatedWork W2808619667 @default.
- W2398242302 hasRelatedWork W2915382126 @default.
- W2398242302 hasRelatedWork W2982076377 @default.
- W2398242302 hasRelatedWork W3092415961 @default.
- W2398242302 hasRelatedWork W3098375495 @default.
- W2398242302 hasRelatedWork W3105525270 @default.
- W2398242302 hasRelatedWork W3207507898 @default.
- W2398242302 isParatext "false" @default.
- W2398242302 isRetracted "false" @default.
- W2398242302 magId "2398242302" @default.
- W2398242302 workType "dissertation" @default.