Matches in SemOpenAlex for { <https://semopenalex.org/work/W2398879410> ?p ?o ?g. }
- W2398879410 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2012 SIAM International Conference on Data Mining (SDM)Dual Transfer LearningMingsheng Long, Jianmin Wang, Guiguang Ding, Wei Cheng, Xiang Zhang, and Wei WangMingsheng Long, Jianmin Wang, Guiguang Ding, Wei Cheng, Xiang Zhang, and Wei Wangpp.540 - 551Chapter DOI:https://doi.org/10.1137/1.9781611972825.47PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Transfer learning aims to leverage the knowledge in the source domain to facilitate the learning tasks in the target domain. It has attracted extensive research interests recently due to its effectiveness in a wide range of applications. The general idea of the existing methods is to utilize the common latent structure shared across domains as the bridge for knowledge transfer. These methods usually model the common latent structure by using either the marginal distribution or the conditional distribution. However, without exploring the duality between these two distributions, these single bridge methods may not achieve optimal capability of knowledge transfer. In this paper, we propose a novel approach, Dual Transfer Learning (DTL), which simultaneously learns the marginal and conditional distributions, and exploits the duality between them in a principled way. The key idea behind DTL is that learning one distribution can help to learn the other. This duality property leads to mutual reinforcement when adapting both distributions across domains to transfer knowledge. The proposed method is formulated as an optimization problem based on joint nonnegative matrix trifactorizations (NMTF). The two distributions are learned from the decomposed latent factors that exhibit the duality property. An efficient alternating minimization algorithm is developed to solve the optimization problem with convergence guarantee. Extensive experimental results demonstrate that DTL is more effective than alternative transfer learning methods. Previous chapter Next chapter RelatedDetails Published:2012ISBN:978-1-61197-232-0eISBN:978-1-61197-282-5 https://doi.org/10.1137/1.9781611972825Book Series Name:ProceedingsBook Code:PRDT12Book Pages:1-1150Key words:Keywords Transfer Learning, Cross-Domain Classification, Dual Transfer Learning, Nonnegative Matrix Tri-Factorization" @default.
- W2398879410 created "2016-06-24" @default.
- W2398879410 creator A5013172366 @default.
- W2398879410 creator A5019241553 @default.
- W2398879410 creator A5031804038 @default.
- W2398879410 creator A5034579434 @default.
- W2398879410 creator A5057732142 @default.
- W2398879410 creator A5087409698 @default.
- W2398879410 date "2012-04-26" @default.
- W2398879410 modified "2023-10-05" @default.
- W2398879410 title "Dual Transfer Learning" @default.
- W2398879410 cites W1603035390 @default.
- W2398879410 cites W172698429 @default.
- W2398879410 cites W183401690 @default.
- W2398879410 cites W1998894210 @default.
- W2398879410 cites W2000987725 @default.
- W2398879410 cites W2043545458 @default.
- W2398879410 cites W2062179223 @default.
- W2398879410 cites W2071018795 @default.
- W2398879410 cites W2104290444 @default.
- W2398879410 cites W2107008379 @default.
- W2398879410 cites W2111362445 @default.
- W2398879410 cites W2115403315 @default.
- W2398879410 cites W2122061064 @default.
- W2398879410 cites W2122838776 @default.
- W2398879410 cites W2134389945 @default.
- W2398879410 cites W2136504847 @default.
- W2398879410 cites W2143374704 @default.
- W2398879410 cites W2153353890 @default.
- W2398879410 cites W2158108973 @default.
- W2398879410 cites W2161047120 @default.
- W2398879410 cites W2163828439 @default.
- W2398879410 cites W2165698076 @default.
- W2398879410 cites W2174302041 @default.
- W2398879410 cites W2296319761 @default.
- W2398879410 doi "https://doi.org/10.1137/1.9781611972825.47" @default.
- W2398879410 hasPublicationYear "2012" @default.
- W2398879410 type Work @default.
- W2398879410 sameAs 2398879410 @default.
- W2398879410 citedByCount "57" @default.
- W2398879410 countsByYear W23988794102012 @default.
- W2398879410 countsByYear W23988794102013 @default.
- W2398879410 countsByYear W23988794102014 @default.
- W2398879410 countsByYear W23988794102015 @default.
- W2398879410 countsByYear W23988794102016 @default.
- W2398879410 countsByYear W23988794102017 @default.
- W2398879410 countsByYear W23988794102019 @default.
- W2398879410 countsByYear W23988794102020 @default.
- W2398879410 countsByYear W23988794102021 @default.
- W2398879410 countsByYear W23988794102022 @default.
- W2398879410 countsByYear W23988794102023 @default.
- W2398879410 crossrefType "proceedings-article" @default.
- W2398879410 hasAuthorship W2398879410A5013172366 @default.
- W2398879410 hasAuthorship W2398879410A5019241553 @default.
- W2398879410 hasAuthorship W2398879410A5031804038 @default.
- W2398879410 hasAuthorship W2398879410A5034579434 @default.
- W2398879410 hasAuthorship W2398879410A5057732142 @default.
- W2398879410 hasAuthorship W2398879410A5087409698 @default.
- W2398879410 hasConcept C100776233 @default.
- W2398879410 hasConcept C105795698 @default.
- W2398879410 hasConcept C118615104 @default.
- W2398879410 hasConcept C119857082 @default.
- W2398879410 hasConcept C122123141 @default.
- W2398879410 hasConcept C124952713 @default.
- W2398879410 hasConcept C126322002 @default.
- W2398879410 hasConcept C134306372 @default.
- W2398879410 hasConcept C142362112 @default.
- W2398879410 hasConcept C150899416 @default.
- W2398879410 hasConcept C153083717 @default.
- W2398879410 hasConcept C154945302 @default.
- W2398879410 hasConcept C165216359 @default.
- W2398879410 hasConcept C18653775 @default.
- W2398879410 hasConcept C2776960227 @default.
- W2398879410 hasConcept C2778023678 @default.
- W2398879410 hasConcept C2780980858 @default.
- W2398879410 hasConcept C33923547 @default.
- W2398879410 hasConcept C36503486 @default.
- W2398879410 hasConcept C41008148 @default.
- W2398879410 hasConcept C56739046 @default.
- W2398879410 hasConcept C71924100 @default.
- W2398879410 hasConcept C80444323 @default.
- W2398879410 hasConcept C97541855 @default.
- W2398879410 hasConceptScore W2398879410C100776233 @default.
- W2398879410 hasConceptScore W2398879410C105795698 @default.
- W2398879410 hasConceptScore W2398879410C118615104 @default.
- W2398879410 hasConceptScore W2398879410C119857082 @default.
- W2398879410 hasConceptScore W2398879410C122123141 @default.
- W2398879410 hasConceptScore W2398879410C124952713 @default.
- W2398879410 hasConceptScore W2398879410C126322002 @default.
- W2398879410 hasConceptScore W2398879410C134306372 @default.
- W2398879410 hasConceptScore W2398879410C142362112 @default.
- W2398879410 hasConceptScore W2398879410C150899416 @default.
- W2398879410 hasConceptScore W2398879410C153083717 @default.
- W2398879410 hasConceptScore W2398879410C154945302 @default.
- W2398879410 hasConceptScore W2398879410C165216359 @default.
- W2398879410 hasConceptScore W2398879410C18653775 @default.
- W2398879410 hasConceptScore W2398879410C2776960227 @default.
- W2398879410 hasConceptScore W2398879410C2778023678 @default.
- W2398879410 hasConceptScore W2398879410C2780980858 @default.
- W2398879410 hasConceptScore W2398879410C33923547 @default.