Matches in SemOpenAlex for { <https://semopenalex.org/work/W2399083740> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2399083740 abstract "In this paper, we propose a graph-based lifting transform for intra-predicted video sequences. The transform can approximate the performance of a Graph Fourier Transform (GFT) for a given graph, but does not require computing eigenvectors. A predict-update bipartition is designed based on a Gaussian Markov Random Field (GMRF) model with the goal to minimize the energy in the prediction set. Additionally, a novel re-connection method is applied for multi-level graphs, leading to significant gain for the proposed bipartition method and for the conventional MaxCut based bipartition. Experiments on intra-predicted video sequences show that the proposed method, even considering the extra overhead for edge information, outperforms the Discrete Cosine Transform (DCT) and approximates the performance of the higher complexity GFT." @default.
- W2399083740 created "2016-06-24" @default.
- W2399083740 creator A5040001106 @default.
- W2399083740 creator A5056337395 @default.
- W2399083740 creator A5069127746 @default.
- W2399083740 date "2016-03-01" @default.
- W2399083740 modified "2023-09-25" @default.
- W2399083740 title "Graph-based lifting transform for intra-predicted video coding" @default.
- W2399083740 cites W1489959051 @default.
- W2399083740 cites W1501565421 @default.
- W2399083740 cites W1555827348 @default.
- W2399083740 cites W1976768677 @default.
- W2399083740 cites W1980811840 @default.
- W2399083740 cites W2011100624 @default.
- W2399083740 cites W2028178479 @default.
- W2399083740 cites W2050320982 @default.
- W2399083740 cites W2057432029 @default.
- W2399083740 cites W2068057575 @default.
- W2399083740 cites W2075470106 @default.
- W2399083740 cites W2112719511 @default.
- W2399083740 cites W2132441534 @default.
- W2399083740 cites W2144392304 @default.
- W2399083740 cites W2145462354 @default.
- W2399083740 cites W2148377450 @default.
- W2399083740 cites W2161694301 @default.
- W2399083740 cites W2165991368 @default.
- W2399083740 cites W2962910558 @default.
- W2399083740 cites W757675842 @default.
- W2399083740 doi "https://doi.org/10.1109/icassp.2016.7471854" @default.
- W2399083740 hasPublicationYear "2016" @default.
- W2399083740 type Work @default.
- W2399083740 sameAs 2399083740 @default.
- W2399083740 citedByCount "14" @default.
- W2399083740 countsByYear W23990837402016 @default.
- W2399083740 countsByYear W23990837402017 @default.
- W2399083740 countsByYear W23990837402018 @default.
- W2399083740 countsByYear W23990837402019 @default.
- W2399083740 countsByYear W23990837402021 @default.
- W2399083740 countsByYear W23990837402022 @default.
- W2399083740 crossrefType "proceedings-article" @default.
- W2399083740 hasAuthorship W2399083740A5040001106 @default.
- W2399083740 hasAuthorship W2399083740A5056337395 @default.
- W2399083740 hasAuthorship W2399083740A5069127746 @default.
- W2399083740 hasConcept C11413529 @default.
- W2399083740 hasConcept C115961682 @default.
- W2399083740 hasConcept C132525143 @default.
- W2399083740 hasConcept C154945302 @default.
- W2399083740 hasConcept C169805256 @default.
- W2399083740 hasConcept C2221639 @default.
- W2399083740 hasConcept C33923547 @default.
- W2399083740 hasConcept C41008148 @default.
- W2399083740 hasConcept C80444323 @default.
- W2399083740 hasConceptScore W2399083740C11413529 @default.
- W2399083740 hasConceptScore W2399083740C115961682 @default.
- W2399083740 hasConceptScore W2399083740C132525143 @default.
- W2399083740 hasConceptScore W2399083740C154945302 @default.
- W2399083740 hasConceptScore W2399083740C169805256 @default.
- W2399083740 hasConceptScore W2399083740C2221639 @default.
- W2399083740 hasConceptScore W2399083740C33923547 @default.
- W2399083740 hasConceptScore W2399083740C41008148 @default.
- W2399083740 hasConceptScore W2399083740C80444323 @default.
- W2399083740 hasLocation W23990837401 @default.
- W2399083740 hasOpenAccess W2399083740 @default.
- W2399083740 hasPrimaryLocation W23990837401 @default.
- W2399083740 hasRelatedWork W1501565421 @default.
- W2399083740 hasRelatedWork W1566428659 @default.
- W2399083740 hasRelatedWork W1599590327 @default.
- W2399083740 hasRelatedWork W1908950877 @default.
- W2399083740 hasRelatedWork W1980811840 @default.
- W2399083740 hasRelatedWork W2018342351 @default.
- W2399083740 hasRelatedWork W2050320982 @default.
- W2399083740 hasRelatedWork W2101491865 @default.
- W2399083740 hasRelatedWork W2131628488 @default.
- W2399083740 hasRelatedWork W2133833176 @default.
- W2399083740 hasRelatedWork W2165101139 @default.
- W2399083740 hasRelatedWork W2291102274 @default.
- W2399083740 hasRelatedWork W2294414102 @default.
- W2399083740 hasRelatedWork W2593294603 @default.
- W2399083740 hasRelatedWork W2611720204 @default.
- W2399083740 hasRelatedWork W2615556757 @default.
- W2399083740 hasRelatedWork W2963432281 @default.
- W2399083740 hasRelatedWork W2967671504 @default.
- W2399083740 hasRelatedWork W3048526884 @default.
- W2399083740 hasRelatedWork W3018951284 @default.
- W2399083740 isParatext "false" @default.
- W2399083740 isRetracted "false" @default.
- W2399083740 magId "2399083740" @default.
- W2399083740 workType "article" @default.