Matches in SemOpenAlex for { <https://semopenalex.org/work/W2399164823> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2399164823 abstract "Deep multiple kernel learning is a powerful technique that selects and deeply combines multiple elementary kernels in order to provide the best performance on a given classification task. This technique, particularly effective, becomes intractable when handling large scale datasets; indeed, multiple nonlinear kernel combinations are time and memory demanding., In this paper, we propose a new framework that significantly reduces the complexity of deep multiple kernels. Given a deep kernel network (DKN), our method designs its equivalent deep map network (DMN), using multi-layer explicit maps that approximate the initial DKN with a high precision. When combined with support vector machines, the design of DMN preserves high classification accuracy compared to its underlying DKN while being (at least) an order of magnitude faster. Experiments conducted on the challenging Im-ageCLEF2013 annotation benchmark, show that the proposed DMN is indeed effective and highly efficient." @default.
- W2399164823 created "2016-06-24" @default.
- W2399164823 creator A5017257056 @default.
- W2399164823 creator A5029896607 @default.
- W2399164823 date "2016-03-01" @default.
- W2399164823 modified "2023-09-30" @default.
- W2399164823 title "Deep kernel map networks for image annotation" @default.
- W2399164823 cites W1510073064 @default.
- W2399164823 cites W1601437336 @default.
- W2399164823 cites W167790647 @default.
- W2399164823 cites W1751437809 @default.
- W2399164823 cites W1944448017 @default.
- W2399164823 cites W2017588182 @default.
- W2399164823 cites W2022137768 @default.
- W2399164823 cites W2031823405 @default.
- W2399164823 cites W2039182213 @default.
- W2399164823 cites W2054103873 @default.
- W2399164823 cites W2102116870 @default.
- W2399164823 cites W2104529636 @default.
- W2399164823 cites W2109235804 @default.
- W2399164823 cites W2112796928 @default.
- W2399164823 cites W2118585731 @default.
- W2399164823 cites W2123872146 @default.
- W2399164823 cites W2134692386 @default.
- W2399164823 cites W2137055149 @default.
- W2399164823 cites W2144902422 @default.
- W2399164823 cites W2145295623 @default.
- W2399164823 cites W2148603752 @default.
- W2399164823 cites W2164535072 @default.
- W2399164823 cites W2294422256 @default.
- W2399164823 cites W2435338979 @default.
- W2399164823 doi "https://doi.org/10.1109/icassp.2016.7471941" @default.
- W2399164823 hasPublicationYear "2016" @default.
- W2399164823 type Work @default.
- W2399164823 sameAs 2399164823 @default.
- W2399164823 citedByCount "26" @default.
- W2399164823 countsByYear W23991648232016 @default.
- W2399164823 countsByYear W23991648232017 @default.
- W2399164823 countsByYear W23991648232018 @default.
- W2399164823 countsByYear W23991648232019 @default.
- W2399164823 countsByYear W23991648232020 @default.
- W2399164823 countsByYear W23991648232021 @default.
- W2399164823 crossrefType "proceedings-article" @default.
- W2399164823 hasAuthorship W2399164823A5017257056 @default.
- W2399164823 hasAuthorship W2399164823A5029896607 @default.
- W2399164823 hasConcept C108583219 @default.
- W2399164823 hasConcept C114614502 @default.
- W2399164823 hasConcept C119857082 @default.
- W2399164823 hasConcept C122280245 @default.
- W2399164823 hasConcept C12267149 @default.
- W2399164823 hasConcept C13280743 @default.
- W2399164823 hasConcept C153180895 @default.
- W2399164823 hasConcept C154945302 @default.
- W2399164823 hasConcept C185798385 @default.
- W2399164823 hasConcept C205649164 @default.
- W2399164823 hasConcept C33923547 @default.
- W2399164823 hasConcept C41008148 @default.
- W2399164823 hasConcept C74193536 @default.
- W2399164823 hasConceptScore W2399164823C108583219 @default.
- W2399164823 hasConceptScore W2399164823C114614502 @default.
- W2399164823 hasConceptScore W2399164823C119857082 @default.
- W2399164823 hasConceptScore W2399164823C122280245 @default.
- W2399164823 hasConceptScore W2399164823C12267149 @default.
- W2399164823 hasConceptScore W2399164823C13280743 @default.
- W2399164823 hasConceptScore W2399164823C153180895 @default.
- W2399164823 hasConceptScore W2399164823C154945302 @default.
- W2399164823 hasConceptScore W2399164823C185798385 @default.
- W2399164823 hasConceptScore W2399164823C205649164 @default.
- W2399164823 hasConceptScore W2399164823C33923547 @default.
- W2399164823 hasConceptScore W2399164823C41008148 @default.
- W2399164823 hasConceptScore W2399164823C74193536 @default.
- W2399164823 hasLocation W23991648231 @default.
- W2399164823 hasOpenAccess W2399164823 @default.
- W2399164823 hasPrimaryLocation W23991648231 @default.
- W2399164823 hasRelatedWork W1510073064 @default.
- W2399164823 hasRelatedWork W1601437336 @default.
- W2399164823 hasRelatedWork W1992208818 @default.
- W2399164823 hasRelatedWork W2039182213 @default.
- W2399164823 hasRelatedWork W2049033299 @default.
- W2399164823 hasRelatedWork W2069797086 @default.
- W2399164823 hasRelatedWork W2070244236 @default.
- W2399164823 hasRelatedWork W2097117768 @default.
- W2399164823 hasRelatedWork W2132285904 @default.
- W2399164823 hasRelatedWork W2136940668 @default.
- W2399164823 hasRelatedWork W2137055149 @default.
- W2399164823 hasRelatedWork W2163605009 @default.
- W2399164823 hasRelatedWork W2194775991 @default.
- W2399164823 hasRelatedWork W2222792052 @default.
- W2399164823 hasRelatedWork W2395459784 @default.
- W2399164823 hasRelatedWork W2587063199 @default.
- W2399164823 hasRelatedWork W2591766052 @default.
- W2399164823 hasRelatedWork W2903909270 @default.
- W2399164823 hasRelatedWork W2964321699 @default.
- W2399164823 hasRelatedWork W993240969 @default.
- W2399164823 isParatext "false" @default.
- W2399164823 isRetracted "false" @default.
- W2399164823 magId "2399164823" @default.
- W2399164823 workType "article" @default.