Matches in SemOpenAlex for { <https://semopenalex.org/work/W2400515182> ?p ?o ?g. }
- W2400515182 endingPage "122" @default.
- W2400515182 startingPage "113" @default.
- W2400515182 abstract "Most approaches to classifier learning for structured objects (such as images or sequences) are based on probabilistic generative models. On the other hand, state-of-the-art classifiers for vectorial data are learned discriminatively. In recent years, these two dual paradigms have been combined via the use of generative embeddings (of which the Fisher kernel is arguably the best known example); these embeddings are mappings from the object space into a fixed dimensional score space, induced by a generative model learned from data, on which a (maybe kernel-based) discriminative approach can then be used. This paper proposes a new semi-parametric approach to build generative embeddings for classification of magnetic resonance images (MRI). Based on the fact that MRI data is well described by Rice distributions, we propose to use Rician mixtures as the underlying generative model, based on which several different generative embeddings are built. These embeddings yield vectorial representations on which kernel-based support vector machines (SVM) can be trained for classification. Concerning the choice of kernel, we adopt the recently proposed nonextensive information theoretic kernels. The methodology proposed was tested on a challenging classification task, which consists in classifying MRI images as belonging to schizophrenic or non-schizophrenic human subjects. The classification is based on a set of regions of interest (ROIs) in each image, with the classifiers corresponding to each ROI being combined via boosting. The experimental results show that the proposed methodology outperforms the previous state-of-the-art methods on the same dataset." @default.
- W2400515182 created "2016-06-24" @default.
- W2400515182 creator A5007242502 @default.
- W2400515182 creator A5011831938 @default.
- W2400515182 creator A5026826555 @default.
- W2400515182 creator A5030545548 @default.
- W2400515182 date "2012-01-01" @default.
- W2400515182 modified "2023-09-23" @default.
- W2400515182 title "Generative embeddings based on Rician mixtures:Application to kernel-based discriminative classification of magnetic resonance images" @default.
- W2400515182 cites W109189503 @default.
- W2400515182 cites W1563088657 @default.
- W2400515182 cites W1589362500 @default.
- W2400515182 cites W1988790447 @default.
- W2400515182 cites W2015245929 @default.
- W2400515182 cites W2049633694 @default.
- W2400515182 cites W2059784307 @default.
- W2400515182 cites W2070134780 @default.
- W2400515182 cites W2114509411 @default.
- W2400515182 cites W2125393460 @default.
- W2400515182 cites W2127905678 @default.
- W2400515182 cites W2153939756 @default.
- W2400515182 cites W2160682802 @default.
- W2400515182 cites W2163614729 @default.
- W2400515182 cites W2166473218 @default.
- W2400515182 cites W2175777828 @default.
- W2400515182 cites W2615112009 @default.
- W2400515182 cites W2703722345 @default.
- W2400515182 cites W3016843226 @default.
- W2400515182 cites W3023786531 @default.
- W2400515182 hasPublicationYear "2012" @default.
- W2400515182 type Work @default.
- W2400515182 sameAs 2400515182 @default.
- W2400515182 citedByCount "2" @default.
- W2400515182 countsByYear W24005151822014 @default.
- W2400515182 crossrefType "proceedings-article" @default.
- W2400515182 hasAuthorship W2400515182A5007242502 @default.
- W2400515182 hasAuthorship W2400515182A5011831938 @default.
- W2400515182 hasAuthorship W2400515182A5026826555 @default.
- W2400515182 hasAuthorship W2400515182A5030545548 @default.
- W2400515182 hasConcept C11413529 @default.
- W2400515182 hasConcept C114614502 @default.
- W2400515182 hasConcept C115961682 @default.
- W2400515182 hasConcept C119857082 @default.
- W2400515182 hasConcept C12267149 @default.
- W2400515182 hasConcept C153180895 @default.
- W2400515182 hasConcept C154945302 @default.
- W2400515182 hasConcept C167966045 @default.
- W2400515182 hasConcept C33923547 @default.
- W2400515182 hasConcept C39890363 @default.
- W2400515182 hasConcept C41008148 @default.
- W2400515182 hasConcept C57273362 @default.
- W2400515182 hasConcept C60472773 @default.
- W2400515182 hasConcept C74193536 @default.
- W2400515182 hasConcept C75294576 @default.
- W2400515182 hasConcept C81978471 @default.
- W2400515182 hasConcept C95623464 @default.
- W2400515182 hasConcept C97931131 @default.
- W2400515182 hasConceptScore W2400515182C11413529 @default.
- W2400515182 hasConceptScore W2400515182C114614502 @default.
- W2400515182 hasConceptScore W2400515182C115961682 @default.
- W2400515182 hasConceptScore W2400515182C119857082 @default.
- W2400515182 hasConceptScore W2400515182C12267149 @default.
- W2400515182 hasConceptScore W2400515182C153180895 @default.
- W2400515182 hasConceptScore W2400515182C154945302 @default.
- W2400515182 hasConceptScore W2400515182C167966045 @default.
- W2400515182 hasConceptScore W2400515182C33923547 @default.
- W2400515182 hasConceptScore W2400515182C39890363 @default.
- W2400515182 hasConceptScore W2400515182C41008148 @default.
- W2400515182 hasConceptScore W2400515182C57273362 @default.
- W2400515182 hasConceptScore W2400515182C60472773 @default.
- W2400515182 hasConceptScore W2400515182C74193536 @default.
- W2400515182 hasConceptScore W2400515182C75294576 @default.
- W2400515182 hasConceptScore W2400515182C81978471 @default.
- W2400515182 hasConceptScore W2400515182C95623464 @default.
- W2400515182 hasConceptScore W2400515182C97931131 @default.
- W2400515182 hasLocation W24005151821 @default.
- W2400515182 hasOpenAccess W2400515182 @default.
- W2400515182 hasPrimaryLocation W24005151821 @default.
- W2400515182 hasRelatedWork W145877631 @default.
- W2400515182 hasRelatedWork W154696581 @default.
- W2400515182 hasRelatedWork W1675664673 @default.
- W2400515182 hasRelatedWork W1902451183 @default.
- W2400515182 hasRelatedWork W2167924377 @default.
- W2400515182 hasRelatedWork W2294513332 @default.
- W2400515182 hasRelatedWork W2524786341 @default.
- W2400515182 hasRelatedWork W2530600186 @default.
- W2400515182 hasRelatedWork W2766516024 @default.
- W2400515182 hasRelatedWork W2789883140 @default.
- W2400515182 hasRelatedWork W2890895603 @default.
- W2400515182 hasRelatedWork W2890979324 @default.
- W2400515182 hasRelatedWork W2946188111 @default.
- W2400515182 hasRelatedWork W2954861366 @default.
- W2400515182 hasRelatedWork W2968518909 @default.
- W2400515182 hasRelatedWork W3002954653 @default.
- W2400515182 hasRelatedWork W3006051909 @default.
- W2400515182 hasRelatedWork W3100234884 @default.
- W2400515182 hasRelatedWork W3152200872 @default.
- W2400515182 hasRelatedWork W3111620335 @default.