Matches in SemOpenAlex for { <https://semopenalex.org/work/W2400693820> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2400693820 endingPage "76" @default.
- W2400693820 startingPage "1" @default.
- W2400693820 abstract "The aim of this thesis is to develop a system that enables autonomous and situated agents to learn and adapt to the environment in which they live and operate. In doing so, the system exploits both adaptation through learning and evolution. A unified approach to learning and adaptation, which combines the principles of neural networks, reinforcement learning and evolutionary methods, is used as a basis for the development of the system. In this regard, a novel method, called Evolutionary Acquisition of Neural Topologies (EANT), of evolving the structures and weights of neural networks is developed. The method introduces an efficient and compact genetic encoding of a neural network onto a linear genome that encodes the topology of the neural network implicitly in the ordering of the elements of the linear genome. Moreover, it enables one to evaluate the neural network without decoding it. The presented genetic encoding is complete in that it can represent any type of neural network. In addition to this, it is closed under both structural mutation and a specially designed crossover operator which exploits the fact that structures originating from some initial structure have some common parts. For evolving the structure and weights of neural networks, the method uses a biologically inspired meta-level evolutionary process where new structures are explored at larger timescale and existing structures are exploited at smaller timescale. The evolutionary process starts with networks of minimal structures whose initial complexity is specified by the domain expert. The introduction of neural structures by structural mutation results in a gradual increase in the complexity of the neural networks along the evolution. The evolutionary process stops searching for the solution when a solution with the necessary minimum complexity is found. This enables EANT to find optimal neural structures for solving a given learning task. The efficiency of EANT is tested on couple of learning tasks and its performance is found to be very good in comparison to other systems tested on the same tasks." @default.
- W2400693820 created "2016-06-24" @default.
- W2400693820 creator A5016398410 @default.
- W2400693820 date "2006-07-07" @default.
- W2400693820 modified "2023-09-26" @default.
- W2400693820 title "Towards a unified approach to learning and adaptation" @default.
- W2400693820 hasPublicationYear "2006" @default.
- W2400693820 type Work @default.
- W2400693820 sameAs 2400693820 @default.
- W2400693820 citedByCount "4" @default.
- W2400693820 crossrefType "dissertation" @default.
- W2400693820 hasAuthorship W2400693820A5016398410 @default.
- W2400693820 hasConcept C111919701 @default.
- W2400693820 hasConcept C114614502 @default.
- W2400693820 hasConcept C118070581 @default.
- W2400693820 hasConcept C122507166 @default.
- W2400693820 hasConcept C125411270 @default.
- W2400693820 hasConcept C139807058 @default.
- W2400693820 hasConcept C147168706 @default.
- W2400693820 hasConcept C154945302 @default.
- W2400693820 hasConcept C159149176 @default.
- W2400693820 hasConcept C169760540 @default.
- W2400693820 hasConcept C175202392 @default.
- W2400693820 hasConcept C184720557 @default.
- W2400693820 hasConcept C199505168 @default.
- W2400693820 hasConcept C199845137 @default.
- W2400693820 hasConcept C33923547 @default.
- W2400693820 hasConcept C41008148 @default.
- W2400693820 hasConcept C41445625 @default.
- W2400693820 hasConcept C50644808 @default.
- W2400693820 hasConcept C86803240 @default.
- W2400693820 hasConcept C97541855 @default.
- W2400693820 hasConcept C98045186 @default.
- W2400693820 hasConceptScore W2400693820C111919701 @default.
- W2400693820 hasConceptScore W2400693820C114614502 @default.
- W2400693820 hasConceptScore W2400693820C118070581 @default.
- W2400693820 hasConceptScore W2400693820C122507166 @default.
- W2400693820 hasConceptScore W2400693820C125411270 @default.
- W2400693820 hasConceptScore W2400693820C139807058 @default.
- W2400693820 hasConceptScore W2400693820C147168706 @default.
- W2400693820 hasConceptScore W2400693820C154945302 @default.
- W2400693820 hasConceptScore W2400693820C159149176 @default.
- W2400693820 hasConceptScore W2400693820C169760540 @default.
- W2400693820 hasConceptScore W2400693820C175202392 @default.
- W2400693820 hasConceptScore W2400693820C184720557 @default.
- W2400693820 hasConceptScore W2400693820C199505168 @default.
- W2400693820 hasConceptScore W2400693820C199845137 @default.
- W2400693820 hasConceptScore W2400693820C33923547 @default.
- W2400693820 hasConceptScore W2400693820C41008148 @default.
- W2400693820 hasConceptScore W2400693820C41445625 @default.
- W2400693820 hasConceptScore W2400693820C50644808 @default.
- W2400693820 hasConceptScore W2400693820C86803240 @default.
- W2400693820 hasConceptScore W2400693820C97541855 @default.
- W2400693820 hasConceptScore W2400693820C98045186 @default.
- W2400693820 hasLocation W24006938201 @default.
- W2400693820 hasOpenAccess W2400693820 @default.
- W2400693820 hasPrimaryLocation W24006938201 @default.
- W2400693820 hasRelatedWork W1482112770 @default.
- W2400693820 hasRelatedWork W1564754565 @default.
- W2400693820 hasRelatedWork W201674293 @default.
- W2400693820 hasRelatedWork W2045491133 @default.
- W2400693820 hasRelatedWork W2101525630 @default.
- W2400693820 hasRelatedWork W2111935653 @default.
- W2400693820 hasRelatedWork W2116850952 @default.
- W2400693820 hasRelatedWork W2124290836 @default.
- W2400693820 hasRelatedWork W2134514463 @default.
- W2400693820 hasRelatedWork W2138784882 @default.
- W2400693820 hasRelatedWork W2144357723 @default.
- W2400693820 hasRelatedWork W2148067905 @default.
- W2400693820 hasRelatedWork W2162813238 @default.
- W2400693820 hasRelatedWork W2171658832 @default.
- W2400693820 hasRelatedWork W44465109 @default.
- W2400693820 hasRelatedWork W6071106 @default.
- W2400693820 hasRelatedWork W89828855 @default.
- W2400693820 hasRelatedWork W92617545 @default.
- W2400693820 hasRelatedWork W1496324727 @default.
- W2400693820 hasRelatedWork W982495505 @default.
- W2400693820 isParatext "false" @default.
- W2400693820 isRetracted "false" @default.
- W2400693820 magId "2400693820" @default.
- W2400693820 workType "dissertation" @default.