Matches in SemOpenAlex for { <https://semopenalex.org/work/W2400906738> ?p ?o ?g. }
- W2400906738 abstract "Schizophrenia is a heterogeneous and multi-factored disease. Investigation of the disorder could profit from statistical methods which can address multiple putative factors and large, complex datasets. Machine learning is a branch of statistical analysis which has specialized in developing such methods. This dissertation contains four investigations of schizophrenia, each highlighting a different aspect of how machine learning can address topical questions in schizophrenia research. The first study, “Potential genetic variants in schizophrenia: A Bayesian analysis,” tested 36 candidate genetic loci to identify those which associated with increased risk of schizophrenia. Genetic effect sizes are small, requiring large samples to detect. Yet certain potentially interesting genetic variants are rare, making collecting such samples difficult. Early selection of genes worth further pursuit can save much wasted time and effort. Six loci were indicated. The second study, “Morphological correlates to cognitive dysfunction in schizophrenia as studied with Bayesian regression,” compared a set of brain morphological measures to identify those which best explained cognitive skill scores. Measures included volumes of cortical, subcortical, and cerebellar structure selected to reflect conflicting models of the morphological substrates of cognition and cognitive deficit in schizophrenia. It found that subcortical and cerebellar structures better explained cognitive skill than cortical structures. The third study, “Investigating possible subtypes of schizophrenia patients and controls based on brain cortical thickness,” searched for cortical regions which showed evidence of morphologically distinguishable subtypes. The clinical heterogeneity of schizophrenia suggests that many disease factors may lead to morphologically distinguishable subtypes in patients. The same method applied to a mixed sample of case and control subjects provided a non-parametric investigation of cortical thickness variation in the disease. Morphological subtypes were not found in the patients. One third of the cortex was found to have two distinguishable types when patients and healthy control subjects were examined together. The fourth study, “Grey and white matter proportional relationships in the cerebellar vermis altered in schizophrenia,” hypothesized that proportional relationships between grey and white matter tissue volumes in the vermis would be strong in healthy control subjects and weakened in patients, reflecting an optimum balance dictated by contrasting biological constraints and disturbed in the disease. This was found to be the case, suggesting an alternate model for vermis neuropathology in schizophrenia. These studies show that machine learning can identify promising avenues for further exploration, discern among overlapping hypotheses, elucidate the structure of the data, and allow the formulation of novel hypotheses based on the structure of the data." @default.
- W2400906738 created "2016-06-24" @default.
- W2400906738 creator A5041770051 @default.
- W2400906738 date "2008-01-01" @default.
- W2400906738 modified "2023-09-27" @default.
- W2400906738 title "Machine learning as a statistical tool in schizophrenia research" @default.
- W2400906738 cites W1509285273 @default.
- W2400906738 cites W1519102471 @default.
- W2400906738 cites W1533179050 @default.
- W2400906738 cites W156498718 @default.
- W2400906738 cites W1608071409 @default.
- W2400906738 cites W1635835901 @default.
- W2400906738 cites W1914703486 @default.
- W2400906738 cites W1963926989 @default.
- W2400906738 cites W1968333224 @default.
- W2400906738 cites W1968422861 @default.
- W2400906738 cites W1968516992 @default.
- W2400906738 cites W1969380437 @default.
- W2400906738 cites W1971257348 @default.
- W2400906738 cites W1976130946 @default.
- W2400906738 cites W1980671117 @default.
- W2400906738 cites W1983355263 @default.
- W2400906738 cites W1985994929 @default.
- W2400906738 cites W1986332042 @default.
- W2400906738 cites W1994517931 @default.
- W2400906738 cites W1994707002 @default.
- W2400906738 cites W1999514770 @default.
- W2400906738 cites W2002082920 @default.
- W2400906738 cites W2003625288 @default.
- W2400906738 cites W2004701894 @default.
- W2400906738 cites W2005844080 @default.
- W2400906738 cites W2006886514 @default.
- W2400906738 cites W2008158562 @default.
- W2400906738 cites W2014387288 @default.
- W2400906738 cites W2014448528 @default.
- W2400906738 cites W2015048175 @default.
- W2400906738 cites W2015070433 @default.
- W2400906738 cites W2024829920 @default.
- W2400906738 cites W2024900156 @default.
- W2400906738 cites W2027196653 @default.
- W2400906738 cites W2036907926 @default.
- W2400906738 cites W2041716195 @default.
- W2400906738 cites W2043619212 @default.
- W2400906738 cites W2052998051 @default.
- W2400906738 cites W2054832190 @default.
- W2400906738 cites W2063466196 @default.
- W2400906738 cites W2063669117 @default.
- W2400906738 cites W2064438454 @default.
- W2400906738 cites W2069673779 @default.
- W2400906738 cites W2071013468 @default.
- W2400906738 cites W2071090720 @default.
- W2400906738 cites W2075941273 @default.
- W2400906738 cites W2083051698 @default.
- W2400906738 cites W2086568497 @default.
- W2400906738 cites W2089763487 @default.
- W2400906738 cites W2092780744 @default.
- W2400906738 cites W2093041430 @default.
- W2400906738 cites W2093390631 @default.
- W2400906738 cites W2095827227 @default.
- W2400906738 cites W2097531835 @default.
- W2400906738 cites W2097745749 @default.
- W2400906738 cites W2099242680 @default.
- W2400906738 cites W2100173716 @default.
- W2400906738 cites W2101135654 @default.
- W2400906738 cites W2105097410 @default.
- W2400906738 cites W2105113370 @default.
- W2400906738 cites W2109844396 @default.
- W2400906738 cites W2110065044 @default.
- W2400906738 cites W2110208125 @default.
- W2400906738 cites W2113319997 @default.
- W2400906738 cites W2127218421 @default.
- W2400906738 cites W2127679160 @default.
- W2400906738 cites W2147621924 @default.
- W2400906738 cites W2151130155 @default.
- W2400906738 cites W2151721316 @default.
- W2400906738 cites W2153087078 @default.
- W2400906738 cites W2157795344 @default.
- W2400906738 cites W2160983331 @default.
- W2400906738 cites W2163274894 @default.
- W2400906738 cites W2170037858 @default.
- W2400906738 cites W2170644672 @default.
- W2400906738 cites W2230640574 @default.
- W2400906738 cites W2294798173 @default.
- W2400906738 cites W2313658198 @default.
- W2400906738 cites W2808339913 @default.
- W2400906738 cites W3127623214 @default.
- W2400906738 cites W88261089 @default.
- W2400906738 cites W1521038821 @default.
- W2400906738 cites W2110558605 @default.
- W2400906738 hasPublicationYear "2008" @default.
- W2400906738 type Work @default.
- W2400906738 sameAs 2400906738 @default.
- W2400906738 citedByCount "0" @default.
- W2400906738 crossrefType "dissertation" @default.
- W2400906738 hasAuthorship W2400906738A5041770051 @default.
- W2400906738 hasConcept C105795698 @default.
- W2400906738 hasConcept C118552586 @default.
- W2400906738 hasConcept C129848803 @default.
- W2400906738 hasConcept C142724271 @default.
- W2400906738 hasConcept C15744967 @default.