Matches in SemOpenAlex for { <https://semopenalex.org/work/W2401131799> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2401131799 abstract "The purpose of our study was to improve our ability to predict response to therapy by integrating mechanistic kinetic data of protein interactions with patient-specific gene and protein expression data. The genetic heterogeneity of cancer results in patient-to-patient variability that makes it difficult to predict whether the patient will respond to a treatment. Molecular biomarkers such as the expression levels of genes or proteins have proven useful in limited cases, for example ErbB2 and trastuzumab, particularly in the epidermal growth factor (EGF) family, but these kinds of markers are still unable to accurately predict all responsive patients. These biomarkers are typically univariate and linear, whereas multivariate, nonlinear biomarkers are needed to adequately describe the network of molecular interactions targeted by a drug. Here, we present a method for building multivariate biomarkers that incorporate BOTH patient-specific transcriptomic/proteomic data AND detailed mechanistic models of the nonlinear interactions between ligands and receptors. The mechanistic models that we use are computational pharmacodynamic models, with multiple compartments, each with multiple cell types that express the ligands and receptors under investigation. The models incorporate detailed protein-protein interaction networks to simulate the complex dynamics of growth factor families and their receptors. By integrating this molecular detail into whole-body simulations with tumors, we can evaluate many different therapeutic approaches – different drugs, doses, schedules, and routes of administration. Our models make predictions of the dynamics of receptor tyrosine kinase activity and of key blood-borne biomarkers following therapeutic intervention. These predictions can and have been validated against clinical experimental data. We applied the method to the EGFR/ErbB family in breast cancer, using individualized data from The Cancer Genome Atlas (TCGA), and showed that the personalized models were able to capture the observed variability in receptor phosphorylation. Before the addition of drugs, the models behaved in a relatively monotonic fashion, with signaling outputs closely following the expression of the key ligands. However, the response to the addition of drugs was much more complex; the baseline expression of genes/proteins was not as good a predictor of the response. We simulated the addition of three antibody drugs that each target one of EGFR, HER2, and HER3. We applied principal component analysis to characterize the output of our simulations – post-therapy time course response. We derived metrics that accounted for both target-specific and off-target effects. We then used multivariate supervised learning methods to develop predictive biomarkers. We found that biomarkers derived from gene expression data were outperformed by biomarkers derived from simulated baseline tumor behavior (i.e. that combined quantitative mechanistic information with gene expression data). This suggested that linear transformations of transcriptomic and proteomic data may not be adequate for predicting drug response; instead, the nonlinear mechanism-based transformation that is central to the computational model is more predictive. In addition, for each of the antibodies investigated, the incorporation of mechanistic protein interactions resulted in the identification of off-target effects with high inter-individual heterogeneity that have the potential to significantly blunt the response. In conclusion, transforming individualized expression data through a detailed kinetic model of molecular interactions improves predictiveness of treatment response. Citation Format: Robert Joseph Bender, Feilim Mac Gabhann. Population pharmacodynamics: Mechanism-based modeling of receptor tyrosine kinase networks in cancer. [abstract]. In: Proceedings of the AACR Special Conference on Computational and Systems Biology of Cancer; Feb 8-11 2015; San Francisco, CA. Philadelphia (PA): AACR; Cancer Res 2015;75(22 Suppl 2):Abstract nr B1-36." @default.
- W2401131799 created "2016-06-24" @default.
- W2401131799 creator A5028192060 @default.
- W2401131799 creator A5045576072 @default.
- W2401131799 date "2015-08-01" @default.
- W2401131799 modified "2023-09-26" @default.
- W2401131799 title "Abstract 3765: Population pharmacodynamics: Mechanism-based modeling of receptor tyrosine kinase networks in cancer" @default.
- W2401131799 doi "https://doi.org/10.1158/1538-7445.am2015-3765" @default.
- W2401131799 hasPublicationYear "2015" @default.
- W2401131799 type Work @default.
- W2401131799 sameAs 2401131799 @default.
- W2401131799 citedByCount "0" @default.
- W2401131799 crossrefType "proceedings-article" @default.
- W2401131799 hasAuthorship W2401131799A5028192060 @default.
- W2401131799 hasAuthorship W2401131799A5045576072 @default.
- W2401131799 hasConcept C101544691 @default.
- W2401131799 hasConcept C111472728 @default.
- W2401131799 hasConcept C121608353 @default.
- W2401131799 hasConcept C138885662 @default.
- W2401131799 hasConcept C170493617 @default.
- W2401131799 hasConcept C2779446555 @default.
- W2401131799 hasConcept C2779786085 @default.
- W2401131799 hasConcept C2780035454 @default.
- W2401131799 hasConcept C2908647359 @default.
- W2401131799 hasConcept C41008148 @default.
- W2401131799 hasConcept C42362537 @default.
- W2401131799 hasConcept C530470458 @default.
- W2401131799 hasConcept C54355233 @default.
- W2401131799 hasConcept C60644358 @default.
- W2401131799 hasConcept C70721500 @default.
- W2401131799 hasConcept C71924100 @default.
- W2401131799 hasConcept C86803240 @default.
- W2401131799 hasConcept C89611455 @default.
- W2401131799 hasConcept C98274493 @default.
- W2401131799 hasConcept C99454951 @default.
- W2401131799 hasConceptScore W2401131799C101544691 @default.
- W2401131799 hasConceptScore W2401131799C111472728 @default.
- W2401131799 hasConceptScore W2401131799C121608353 @default.
- W2401131799 hasConceptScore W2401131799C138885662 @default.
- W2401131799 hasConceptScore W2401131799C170493617 @default.
- W2401131799 hasConceptScore W2401131799C2779446555 @default.
- W2401131799 hasConceptScore W2401131799C2779786085 @default.
- W2401131799 hasConceptScore W2401131799C2780035454 @default.
- W2401131799 hasConceptScore W2401131799C2908647359 @default.
- W2401131799 hasConceptScore W2401131799C41008148 @default.
- W2401131799 hasConceptScore W2401131799C42362537 @default.
- W2401131799 hasConceptScore W2401131799C530470458 @default.
- W2401131799 hasConceptScore W2401131799C54355233 @default.
- W2401131799 hasConceptScore W2401131799C60644358 @default.
- W2401131799 hasConceptScore W2401131799C70721500 @default.
- W2401131799 hasConceptScore W2401131799C71924100 @default.
- W2401131799 hasConceptScore W2401131799C86803240 @default.
- W2401131799 hasConceptScore W2401131799C89611455 @default.
- W2401131799 hasConceptScore W2401131799C98274493 @default.
- W2401131799 hasConceptScore W2401131799C99454951 @default.
- W2401131799 hasLocation W24011317991 @default.
- W2401131799 hasOpenAccess W2401131799 @default.
- W2401131799 hasPrimaryLocation W24011317991 @default.
- W2401131799 hasRelatedWork W1540386175 @default.
- W2401131799 hasRelatedWork W1553827845 @default.
- W2401131799 hasRelatedWork W1561997384 @default.
- W2401131799 hasRelatedWork W192377586 @default.
- W2401131799 hasRelatedWork W1963543404 @default.
- W2401131799 hasRelatedWork W2052537015 @default.
- W2401131799 hasRelatedWork W2058074830 @default.
- W2401131799 hasRelatedWork W2182485819 @default.
- W2401131799 hasRelatedWork W2255061772 @default.
- W2401131799 hasRelatedWork W2401533415 @default.
- W2401131799 hasRelatedWork W2734233869 @default.
- W2401131799 hasRelatedWork W2742248058 @default.
- W2401131799 hasRelatedWork W2782594740 @default.
- W2401131799 hasRelatedWork W2804409722 @default.
- W2401131799 hasRelatedWork W3037807288 @default.
- W2401131799 hasRelatedWork W3039349546 @default.
- W2401131799 hasRelatedWork W3039569343 @default.
- W2401131799 hasRelatedWork W3166112016 @default.
- W2401131799 hasRelatedWork W3187033466 @default.
- W2401131799 hasRelatedWork W3201022529 @default.
- W2401131799 isParatext "false" @default.
- W2401131799 isRetracted "false" @default.
- W2401131799 magId "2401131799" @default.
- W2401131799 workType "article" @default.