Matches in SemOpenAlex for { <https://semopenalex.org/work/W2401345401> ?p ?o ?g. }
- W2401345401 endingPage "113" @default.
- W2401345401 startingPage "97" @default.
- W2401345401 abstract "Image registration under challenging realistic conditions is a very important area of research. In this paper, we focus on algorithms that seek to densely align two volumetric images according to a global similarity measure. Despite intensive research in this area, there is still a need for similarity measures that are robust to outliers common to many different types of images. For example, medical image data is often corrupted by intensity inhomogeneities and may contain outliers in the form of pathologies. In this paper we propose a global similarity measure that is robust to both intensity inhomogeneities and outliers without requiring prior knowledge of the type of outliers. We combine the normalised gradients of images with the cosine function and show that it is theoretically robust against a very general class of outliers. Experimentally, we verify the robustness of our measures within two distinct algorithms. Firstly, we embed our similarity measures within a proof-of-concept extension of the Lucas–Kanade algorithm for volumetric data. Finally, we embed our measures within a popular non-rigid alignment framework based on free-form deformations and show it to be robust against both simulated tumours and intensity inhomogeneities." @default.
- W2401345401 created "2016-06-24" @default.
- W2401345401 creator A5016912926 @default.
- W2401345401 creator A5024224610 @default.
- W2401345401 creator A5028377995 @default.
- W2401345401 creator A5054296002 @default.
- W2401345401 creator A5080553022 @default.
- W2401345401 creator A5090484752 @default.
- W2401345401 date "2016-08-01" @default.
- W2401345401 modified "2023-09-24" @default.
- W2401345401 title "A robust similarity measure for volumetric image registration with outliers" @default.
- W2401345401 cites W1425182684 @default.
- W2401345401 cites W1488379136 @default.
- W2401345401 cites W1524894299 @default.
- W2401345401 cites W191561589 @default.
- W2401345401 cites W1968782121 @default.
- W2401345401 cites W1980114101 @default.
- W2401345401 cites W1983050445 @default.
- W2401345401 cites W1986625483 @default.
- W2401345401 cites W1988942170 @default.
- W2401345401 cites W2030042930 @default.
- W2401345401 cites W2033961931 @default.
- W2401345401 cites W2035379092 @default.
- W2401345401 cites W2057268059 @default.
- W2401345401 cites W2067482652 @default.
- W2401345401 cites W2082308025 @default.
- W2401345401 cites W2096503284 @default.
- W2401345401 cites W2101544546 @default.
- W2401345401 cites W2103876808 @default.
- W2401345401 cites W2105456967 @default.
- W2401345401 cites W2113576511 @default.
- W2401345401 cites W2117340355 @default.
- W2401345401 cites W2118877769 @default.
- W2401345401 cites W2119950347 @default.
- W2401345401 cites W2136390628 @default.
- W2401345401 cites W2136503713 @default.
- W2401345401 cites W2139540805 @default.
- W2401345401 cites W2140760626 @default.
- W2401345401 cites W2143451044 @default.
- W2401345401 cites W2143667750 @default.
- W2401345401 cites W2144458135 @default.
- W2401345401 cites W2149157079 @default.
- W2401345401 cites W2150410007 @default.
- W2401345401 cites W2150534249 @default.
- W2401345401 cites W2156875677 @default.
- W2401345401 cites W2156992893 @default.
- W2401345401 cites W2157848968 @default.
- W2401345401 cites W2158596786 @default.
- W2401345401 cites W2169065455 @default.
- W2401345401 cites W2171272565 @default.
- W2401345401 cites W2753461371 @default.
- W2401345401 doi "https://doi.org/10.1016/j.imavis.2016.05.006" @default.
- W2401345401 hasPublicationYear "2016" @default.
- W2401345401 type Work @default.
- W2401345401 sameAs 2401345401 @default.
- W2401345401 citedByCount "7" @default.
- W2401345401 countsByYear W24013454012019 @default.
- W2401345401 countsByYear W24013454012020 @default.
- W2401345401 countsByYear W24013454012021 @default.
- W2401345401 crossrefType "journal-article" @default.
- W2401345401 hasAuthorship W2401345401A5016912926 @default.
- W2401345401 hasAuthorship W2401345401A5024224610 @default.
- W2401345401 hasAuthorship W2401345401A5028377995 @default.
- W2401345401 hasAuthorship W2401345401A5054296002 @default.
- W2401345401 hasAuthorship W2401345401A5080553022 @default.
- W2401345401 hasAuthorship W2401345401A5090484752 @default.
- W2401345401 hasBestOaLocation W24013454012 @default.
- W2401345401 hasConcept C103278499 @default.
- W2401345401 hasConcept C104317684 @default.
- W2401345401 hasConcept C115961682 @default.
- W2401345401 hasConcept C124101348 @default.
- W2401345401 hasConcept C153180895 @default.
- W2401345401 hasConcept C154945302 @default.
- W2401345401 hasConcept C166704113 @default.
- W2401345401 hasConcept C185592680 @default.
- W2401345401 hasConcept C2776517306 @default.
- W2401345401 hasConcept C2780009758 @default.
- W2401345401 hasConcept C2780762811 @default.
- W2401345401 hasConcept C31972630 @default.
- W2401345401 hasConcept C33923547 @default.
- W2401345401 hasConcept C41008148 @default.
- W2401345401 hasConcept C55493867 @default.
- W2401345401 hasConcept C63479239 @default.
- W2401345401 hasConcept C67226441 @default.
- W2401345401 hasConcept C79337645 @default.
- W2401345401 hasConceptScore W2401345401C103278499 @default.
- W2401345401 hasConceptScore W2401345401C104317684 @default.
- W2401345401 hasConceptScore W2401345401C115961682 @default.
- W2401345401 hasConceptScore W2401345401C124101348 @default.
- W2401345401 hasConceptScore W2401345401C153180895 @default.
- W2401345401 hasConceptScore W2401345401C154945302 @default.
- W2401345401 hasConceptScore W2401345401C166704113 @default.
- W2401345401 hasConceptScore W2401345401C185592680 @default.
- W2401345401 hasConceptScore W2401345401C2776517306 @default.
- W2401345401 hasConceptScore W2401345401C2780009758 @default.
- W2401345401 hasConceptScore W2401345401C2780762811 @default.
- W2401345401 hasConceptScore W2401345401C31972630 @default.
- W2401345401 hasConceptScore W2401345401C33923547 @default.