Matches in SemOpenAlex for { <https://semopenalex.org/work/W2401351246> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2401351246 endingPage "102" @default.
- W2401351246 startingPage "89" @default.
- W2401351246 abstract "Vehicular Data includes different facts and measurements made over a set of moving vehicles. Most of us use cars or public transportation for our work commute, daily routines and leisure. But, except of our destination, possible time of arrival and what is directly around us, we know very little about the traffic conditions in the city as a whole. Because all roads are connected in a vast network, events in other parts of town can and will directly affect us. The more we know about the traffic inside a city, the better decisions we can make. Vehicular measurements may contain a vast amount of information about the way our cities function. Information that can be used for more than improving our commute, it is indicative of other features of the city like the amount of pollution in different regions. All the information and knowledge we can extract, can be used to directly improve our life. We live in a world where data is constantly generated and we store it and process it at an ever growing rate. Vehicular Data does not stray from this fact and is rapidly growing in size and complexity, with more and more ways to monitoring traffic, either from inside cars or from sensors placed on the road. Smartphones and in-car-computers are now common and they can produce a vast amount of data: it can identify a cars location, destination, current speed and even driving habits. Machine learning is the perfect complement for Big Data, as large data sets can be rendered useless without methods to extract knowledge and information from them. Machine learning, currently a popular research topic, has a large number of algorithms design to achieve this task, of knowledge extraction. Most of these techniques and algorithms can be directly applied to Vehicular Data. In this article we demonstrate how the use of a simple algorithm, k-Nearest Neighbors, can be used to extract valuable information from even a relatively small vehicular data set. Because of the vast size of most of our cities and the number of cars that are on their roads at any time of the day, standard machine learning systems do not manage to process data in a manner that would permit real time use of the extracted information. A solution to this problem is brought by distributed systems and cloud processing. By parallelizing and distributing machine learning algorithms we can use data at its highest potential and with little delay. Here, we show how this can be achieved by distributing the k-Nearest Neighbors machine learning algorithm over MPI. We hope this would motivate the research into other combinations of merging machine learning algorithms with Vehicular Data sets." @default.
- W2401351246 created "2016-06-24" @default.
- W2401351246 creator A5007964745 @default.
- W2401351246 creator A5024776367 @default.
- W2401351246 creator A5027328407 @default.
- W2401351246 creator A5041308251 @default.
- W2401351246 creator A5060327678 @default.
- W2401351246 date "2015-01-01" @default.
- W2401351246 modified "2023-09-27" @default.
- W2401351246 title "Enabling Vehicular Data with Distributed Machine Learning" @default.
- W2401351246 cites W1973943669 @default.
- W2401351246 cites W1980097476 @default.
- W2401351246 cites W1999377004 @default.
- W2401351246 cites W2003272624 @default.
- W2401351246 cites W2012124117 @default.
- W2401351246 cites W2044693472 @default.
- W2401351246 cites W2049003051 @default.
- W2401351246 cites W2065013348 @default.
- W2401351246 cites W2074739868 @default.
- W2401351246 cites W2096544401 @default.
- W2401351246 cites W2103082337 @default.
- W2401351246 cites W2124657875 @default.
- W2401351246 cites W2126337883 @default.
- W2401351246 cites W2132461991 @default.
- W2401351246 cites W2143065514 @default.
- W2401351246 cites W2145039203 @default.
- W2401351246 cites W2149880269 @default.
- W2401351246 cites W2150544991 @default.
- W2401351246 cites W2154879298 @default.
- W2401351246 cites W4205198988 @default.
- W2401351246 doi "https://doi.org/10.1007/978-3-662-49017-4_6" @default.
- W2401351246 hasPublicationYear "2015" @default.
- W2401351246 type Work @default.
- W2401351246 sameAs 2401351246 @default.
- W2401351246 citedByCount "3" @default.
- W2401351246 countsByYear W24013512462016 @default.
- W2401351246 countsByYear W24013512462017 @default.
- W2401351246 crossrefType "book-chapter" @default.
- W2401351246 hasAuthorship W2401351246A5007964745 @default.
- W2401351246 hasAuthorship W2401351246A5024776367 @default.
- W2401351246 hasAuthorship W2401351246A5027328407 @default.
- W2401351246 hasAuthorship W2401351246A5041308251 @default.
- W2401351246 hasAuthorship W2401351246A5060327678 @default.
- W2401351246 hasBestOaLocation W24013512462 @default.
- W2401351246 hasConcept C104317684 @default.
- W2401351246 hasConcept C111919701 @default.
- W2401351246 hasConcept C112313634 @default.
- W2401351246 hasConcept C127716648 @default.
- W2401351246 hasConcept C14036430 @default.
- W2401351246 hasConcept C177264268 @default.
- W2401351246 hasConcept C185592680 @default.
- W2401351246 hasConcept C188082640 @default.
- W2401351246 hasConcept C199360897 @default.
- W2401351246 hasConcept C41008148 @default.
- W2401351246 hasConcept C55493867 @default.
- W2401351246 hasConcept C78458016 @default.
- W2401351246 hasConcept C86803240 @default.
- W2401351246 hasConcept C98045186 @default.
- W2401351246 hasConceptScore W2401351246C104317684 @default.
- W2401351246 hasConceptScore W2401351246C111919701 @default.
- W2401351246 hasConceptScore W2401351246C112313634 @default.
- W2401351246 hasConceptScore W2401351246C127716648 @default.
- W2401351246 hasConceptScore W2401351246C14036430 @default.
- W2401351246 hasConceptScore W2401351246C177264268 @default.
- W2401351246 hasConceptScore W2401351246C185592680 @default.
- W2401351246 hasConceptScore W2401351246C188082640 @default.
- W2401351246 hasConceptScore W2401351246C199360897 @default.
- W2401351246 hasConceptScore W2401351246C41008148 @default.
- W2401351246 hasConceptScore W2401351246C55493867 @default.
- W2401351246 hasConceptScore W2401351246C78458016 @default.
- W2401351246 hasConceptScore W2401351246C86803240 @default.
- W2401351246 hasConceptScore W2401351246C98045186 @default.
- W2401351246 hasLocation W24013512461 @default.
- W2401351246 hasLocation W24013512462 @default.
- W2401351246 hasOpenAccess W2401351246 @default.
- W2401351246 hasPrimaryLocation W24013512461 @default.
- W2401351246 hasRelatedWork W177259560 @default.
- W2401351246 hasRelatedWork W2015462925 @default.
- W2401351246 hasRelatedWork W2072032541 @default.
- W2401351246 hasRelatedWork W2355215981 @default.
- W2401351246 hasRelatedWork W2366115308 @default.
- W2401351246 hasRelatedWork W3098582471 @default.
- W2401351246 hasRelatedWork W3154275865 @default.
- W2401351246 hasRelatedWork W3169083941 @default.
- W2401351246 hasRelatedWork W4214561987 @default.
- W2401351246 hasRelatedWork W2012842278 @default.
- W2401351246 isParatext "false" @default.
- W2401351246 isRetracted "false" @default.
- W2401351246 magId "2401351246" @default.
- W2401351246 workType "book-chapter" @default.