Matches in SemOpenAlex for { <https://semopenalex.org/work/W2401604655> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2401604655 startingPage "1617" @default.
- W2401604655 abstract "Recent developments in high-throughput technologies have been very helpful towards understanding the molecular abnormalities observed in disease conditions such as cancer. High-throughput experiments, which provide transcriptome-wide expression information for a cell give better insight into understanding the differences of biological processes between normal and pathological conditions. Instead of examining each gene individually, considering the interactions between genes in a pathway would be more effective for understanding cellular events as a whole. Group of genes that chemically act together in a particular cellular process to perform certain functions in a cell is defined as a cellular signaling pathway. In this study, our aim is to represent the signaling pathway as a probabilistic model to analyze the behavior of the final activity processes in the pathway over high-throughput microarray experiment data obtained from normal and cancer samples. In order to model the pathway probabilistically, we used Bayesian Networks (BNs) that are most suitable for representing the probabilistic knowledge in a graph-like structure. In our Bayesian Network model, the gene products in the pathway denote the nodes of the network and the relations between the genes denote the edges of the network. The expression values of the genes, which are continuous values, stand for the random variables representing the nodes. In the first phase of the study, we considered the discrete case and discretized the continuous expression values in order to construct the Conditional Probability Tables (CPTs) of the BNs. We modeled two Bayesian Networks, one with normal samples and the other with cancer samples, to verify whether the BNs trained using the samples from these two cases (normal vs. cancer) can distinguish a test sample of a specific case. We first tested our model on a small pathway and obtained promising results. Our further purpose is to improve the model for larger pathways with different datasets from various cancer types. Proceedings IWBBIO 2014. Granada 7-9 April, 2014 1617" @default.
- W2401604655 created "2016-06-24" @default.
- W2401604655 creator A5037079774 @default.
- W2401604655 creator A5042515589 @default.
- W2401604655 creator A5078747390 @default.
- W2401604655 creator A5087248857 @default.
- W2401604655 date "2014-01-01" @default.
- W2401604655 modified "2023-09-23" @default.
- W2401604655 title "Discriminative Modeling of Cell Signaling as Bayesian Networks." @default.
- W2401604655 hasPublicationYear "2014" @default.
- W2401604655 type Work @default.
- W2401604655 sameAs 2401604655 @default.
- W2401604655 citedByCount "0" @default.
- W2401604655 crossrefType "journal-article" @default.
- W2401604655 hasAuthorship W2401604655A5037079774 @default.
- W2401604655 hasAuthorship W2401604655A5042515589 @default.
- W2401604655 hasAuthorship W2401604655A5078747390 @default.
- W2401604655 hasAuthorship W2401604655A5087248857 @default.
- W2401604655 hasConcept C104317684 @default.
- W2401604655 hasConcept C150194340 @default.
- W2401604655 hasConcept C154945302 @default.
- W2401604655 hasConcept C155846161 @default.
- W2401604655 hasConcept C33724603 @default.
- W2401604655 hasConcept C41008148 @default.
- W2401604655 hasConcept C49937458 @default.
- W2401604655 hasConcept C54355233 @default.
- W2401604655 hasConcept C67339327 @default.
- W2401604655 hasConcept C70721500 @default.
- W2401604655 hasConcept C8415881 @default.
- W2401604655 hasConcept C86803240 @default.
- W2401604655 hasConcept C97931131 @default.
- W2401604655 hasConcept C9927688 @default.
- W2401604655 hasConceptScore W2401604655C104317684 @default.
- W2401604655 hasConceptScore W2401604655C150194340 @default.
- W2401604655 hasConceptScore W2401604655C154945302 @default.
- W2401604655 hasConceptScore W2401604655C155846161 @default.
- W2401604655 hasConceptScore W2401604655C33724603 @default.
- W2401604655 hasConceptScore W2401604655C41008148 @default.
- W2401604655 hasConceptScore W2401604655C49937458 @default.
- W2401604655 hasConceptScore W2401604655C54355233 @default.
- W2401604655 hasConceptScore W2401604655C67339327 @default.
- W2401604655 hasConceptScore W2401604655C70721500 @default.
- W2401604655 hasConceptScore W2401604655C8415881 @default.
- W2401604655 hasConceptScore W2401604655C86803240 @default.
- W2401604655 hasConceptScore W2401604655C97931131 @default.
- W2401604655 hasConceptScore W2401604655C9927688 @default.
- W2401604655 hasLocation W24016046551 @default.
- W2401604655 hasOpenAccess W2401604655 @default.
- W2401604655 hasPrimaryLocation W24016046551 @default.
- W2401604655 hasRelatedWork W128224961 @default.
- W2401604655 hasRelatedWork W1999419114 @default.
- W2401604655 hasRelatedWork W2137839010 @default.
- W2401604655 hasRelatedWork W2142720308 @default.
- W2401604655 hasRelatedWork W2154300404 @default.
- W2401604655 hasRelatedWork W2287151082 @default.
- W2401604655 hasRelatedWork W2491437095 @default.
- W2401604655 hasRelatedWork W2520019544 @default.
- W2401604655 hasRelatedWork W2611370172 @default.
- W2401604655 hasRelatedWork W2621059596 @default.
- W2401604655 hasRelatedWork W2760259264 @default.
- W2401604655 hasRelatedWork W2799474655 @default.
- W2401604655 hasRelatedWork W2904574059 @default.
- W2401604655 hasRelatedWork W2949998840 @default.
- W2401604655 hasRelatedWork W2953221362 @default.
- W2401604655 hasRelatedWork W2953362338 @default.
- W2401604655 hasRelatedWork W2963517317 @default.
- W2401604655 hasRelatedWork W2969296845 @default.
- W2401604655 hasRelatedWork W2979943211 @default.
- W2401604655 hasRelatedWork W122863292 @default.
- W2401604655 isParatext "false" @default.
- W2401604655 isRetracted "false" @default.
- W2401604655 magId "2401604655" @default.
- W2401604655 workType "article" @default.