Matches in SemOpenAlex for { <https://semopenalex.org/work/W2401681794> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2401681794 endingPage "270" @default.
- W2401681794 startingPage "1" @default.
- W2401681794 abstract "Efficient star query processing is crucial for a performant data warehouse (DW) implementation and much work is available on physical optimization (e.g., indexing and schema design) and logical optimization (e.g., pre-aggregated materialized views with query rewriting). Organizing fact tables with clustering multidimensional access methods (like the UB-Tree) are a promising approach to speed up star queries. However, the implementation into commercial products has not been done so far, since in addition to the clustering index organization, many parts of a database management system must be extended. For example, the query optimizer with corresponding cost model modifications must support the new organization and various optimization topics. In this thesis, we present EHC, the Encoding for Hierarchical Clustering in combination with UB-Trees. EHC enables the use of clustering index structures also for hierarchical data. EHC is extended to MHC, the multidimensional hierarchical clustering by combining multiple dimensions. Based on the concept of MHC, we develop a number of query optimization algorithms, in order to support hierarchical clustering with query processing. For this purpose, we present a complete abstract processing plan that captures all necessary steps in evaluating star queries in these environments. One important step in the query processing phase is, however, still a bottleneck: the residual join of results from the fact table with the dimension tables in combination with grouping and aggregation. This phase typically consumes between 50% and 80% of the overall processing time. In typical data warehouse scenarios pre-grouping methods only have a limited effect as the grouping is usually specified on the hierarchy levels of the dimension tables and not on the fact table itself. Therefore, we suggest a combination of hierarchical clustering and pre-grouping. Exploiting hierarchy semantics for the pre-grouping of fact table result tuples is several times faster than conventional query processing. The reason for this is that hierarchical pre-grouping reduces the number of join operations significantly. With this method even queries covering a large part of the fact table can be executed within a time span acceptable for interactive query processing. All these concepts have been implemented during this thesis into the commercial database management system Transbase® Hypercube and already run productive at a couple of customers of Transaction Software GmbH. During the implementation further problems occurred, like complex aggregate expressions, multiple query boxes, non-clustering dimensions, complex schemata, multi-fact-table-joins etc. For these problems, solutions are described and have been implemented. We further address some theoretical aspects of multiple hierarchies and dynamic changes of surrogates and a complete hierarchy model. Finally, we present measurement results of a complex real-world sales transaction data warehouse of an electronic retailer and of the APB standard benchmark for OLAP. These measurements show the benefit of the implemented methods compared to conventional state of the art techniques and database management systems." @default.
- W2401681794 created "2016-06-24" @default.
- W2401681794 creator A5074569740 @default.
- W2401681794 date "2003-01-01" @default.
- W2401681794 modified "2023-09-27" @default.
- W2401681794 title "Modeling and implementing multidimensional hierarchically structured Data for Data Warehouses in relational Database Management Systems and the Implementation into Transbase" @default.
- W2401681794 hasPublicationYear "2003" @default.
- W2401681794 type Work @default.
- W2401681794 sameAs 2401681794 @default.
- W2401681794 citedByCount "0" @default.
- W2401681794 crossrefType "dissertation" @default.
- W2401681794 hasAuthorship W2401681794A5074569740 @default.
- W2401681794 hasConcept C119857082 @default.
- W2401681794 hasConcept C124101348 @default.
- W2401681794 hasConcept C135572916 @default.
- W2401681794 hasConcept C148840519 @default.
- W2401681794 hasConcept C149635348 @default.
- W2401681794 hasConcept C157692150 @default.
- W2401681794 hasConcept C190703929 @default.
- W2401681794 hasConcept C23123220 @default.
- W2401681794 hasConcept C2780513914 @default.
- W2401681794 hasConcept C30775581 @default.
- W2401681794 hasConcept C41008148 @default.
- W2401681794 hasConcept C54239708 @default.
- W2401681794 hasConcept C73555534 @default.
- W2401681794 hasConcept C77088390 @default.
- W2401681794 hasConcept C92835128 @default.
- W2401681794 hasConcept C98199447 @default.
- W2401681794 hasConceptScore W2401681794C119857082 @default.
- W2401681794 hasConceptScore W2401681794C124101348 @default.
- W2401681794 hasConceptScore W2401681794C135572916 @default.
- W2401681794 hasConceptScore W2401681794C148840519 @default.
- W2401681794 hasConceptScore W2401681794C149635348 @default.
- W2401681794 hasConceptScore W2401681794C157692150 @default.
- W2401681794 hasConceptScore W2401681794C190703929 @default.
- W2401681794 hasConceptScore W2401681794C23123220 @default.
- W2401681794 hasConceptScore W2401681794C2780513914 @default.
- W2401681794 hasConceptScore W2401681794C30775581 @default.
- W2401681794 hasConceptScore W2401681794C41008148 @default.
- W2401681794 hasConceptScore W2401681794C54239708 @default.
- W2401681794 hasConceptScore W2401681794C73555534 @default.
- W2401681794 hasConceptScore W2401681794C77088390 @default.
- W2401681794 hasConceptScore W2401681794C92835128 @default.
- W2401681794 hasConceptScore W2401681794C98199447 @default.
- W2401681794 hasLocation W24016817941 @default.
- W2401681794 hasOpenAccess W2401681794 @default.
- W2401681794 hasPrimaryLocation W24016817941 @default.
- W2401681794 hasRelatedWork W1950186851 @default.
- W2401681794 hasRelatedWork W2030750143 @default.
- W2401681794 hasRelatedWork W2083012399 @default.
- W2401681794 hasRelatedWork W2260121843 @default.
- W2401681794 hasRelatedWork W2279351836 @default.
- W2401681794 hasRelatedWork W2284149529 @default.
- W2401681794 hasRelatedWork W2326398645 @default.
- W2401681794 hasRelatedWork W2395298664 @default.
- W2401681794 hasRelatedWork W2529787441 @default.
- W2401681794 hasRelatedWork W2809297885 @default.
- W2401681794 hasRelatedWork W2813602539 @default.
- W2401681794 hasRelatedWork W2905044464 @default.
- W2401681794 hasRelatedWork W2955514960 @default.
- W2401681794 hasRelatedWork W2994783599 @default.
- W2401681794 hasRelatedWork W3023442443 @default.
- W2401681794 hasRelatedWork W3172545478 @default.
- W2401681794 hasRelatedWork W3184524636 @default.
- W2401681794 hasRelatedWork W1866703447 @default.
- W2401681794 hasRelatedWork W2185145802 @default.
- W2401681794 hasRelatedWork W2186948895 @default.
- W2401681794 isParatext "false" @default.
- W2401681794 isRetracted "false" @default.
- W2401681794 magId "2401681794" @default.
- W2401681794 workType "dissertation" @default.