Matches in SemOpenAlex for { <https://semopenalex.org/work/W2401888931> ?p ?o ?g. }
- W2401888931 endingPage "102" @default.
- W2401888931 startingPage "82" @default.
- W2401888931 abstract "Recent ICDP drilling and deep basin volcanic exploration of 3000 m below the surface in the Songliao Basin (SB) have highlighted the 3-D delineation of the basin. The integrated new data led us to reevaluate the basin tectonics, for which the basin type, basin evolution and a number of geodynamic aspects have been controversial topics. We outline the position of a main lithospheric scale detachment fault beneath the SB, based on apparent crustal scale displacements, Moho breaks, the thinning of the Moho transition zone beneath the SB and the changing mantle thickness. This fault interpretation is consistent with simple shear as the rift mechanism. Based on a comprehensive analysis of the tectonic setting, underlying crust, structural style, sequence stratigraphy, subsidence history and volcanism, we propose an active continental margin model for the SB which shows some similarities to aulacogens but also notable differences. Situated between two Late Mesozoic active continental margins, the northern/northwestern Mongol–Okhotsk and the eastern Sikhote-Alin orogenic belts, the Cretaceous basin evolved on a pre-Triassic structurally weak basement mosaic. Its development began with regional mega-rifting from 150 to 105 Ma, followed by significant sagging between 105 and 79.1 Ma and ended with regional uplift and basin inversion from 79.1 to 64 Ma. Three regional angular unconformities separate the basin fill into three respective tectono-stratigraphic sequences. (1) The syn-rift stage is characterized by widespread fault-bounded grabens and volcanogenic successions, corresponding upward to the Huoshiling, Shahezi and Yingcheng Formations. (2) The post-rift stage includes the Denglouku, Quantou, Qignshankou, Yaojia and Nenjiang Formations. It is a special feature that the subsidence rate is abnormally high (mean of 103 m/Ma), and that flood basalt erupted along an axial wrench fault zone, associated with several marine intervals from the mid-Turonian to early Campanian (K2qn to K2n), possibly (not certainly) indicating incipient sea floor spreading characterized by Moho breaks along the basin axis in the SB around 88 Ma. Stretching stopped abruptly at approximately 79.1 Ma and was followed by uplift and rapid erosion (− 145 m/Ma). (3) Recorded by the Sifangtai and Mingshui Formations the structural inversion stage included a continuous depocenter migration to the northwest. The basin was shrinking to demise as a result of changing subduction parameters of the Pacific subduction zone. In addition to the three tectonic basin cycles, a cyclic basin fill pattern exists with three volcanic basin fill intervals of Huoshiling, Yingcheng, and upper Qingshankou Formations that alternate with sedimentary basin fill intervals of Shahezi, Dengloukou-Quantou, and Yaojia-Nenjiang Formations. When determining the subsidence rates, we observed not only anomalously fast subsidence but also found an intricate link between the subsidence rate and type of basin fill. After each volcanic interval, the subsidence rates increased in a cyclic fashion during the sedimentary intervals. Thus, there is a system of three different types of important, basin-wide geological cycles that controlled the evolution of the SB. The subsidence rate was especially high (up to 199 m/Ma) after the last volcanic episode at 88 Ma. In addition to thermal subsidence and loading by the basin fill as causative processes, we also consider magmatic processes related to asthenospheric upwelling beneath the SB. They involve the roof collapse of shallow, depleted magma chambers, the igneous accretion of initially hot, dense, basic rocks, and lithospheric delamination beneath the SB. The difference in the subsidence rates during the volcanic and sedimentary intervals may in part also have been due to heating-related uplift during the volcanic intervals. The particularly high subsidence during the Late Cretaceous sedimentary cycles was partly increased by transtension. We put forward a general model for active continental margin basins. They are generally similar to aulacogens but display the following differences. In active continental margin basins, rifting depends on the subduction parameters that may cause strong to mild extension in the giant marginal region. The geochemical composition of the volcanic rocks is more calc-alkaline in nature because they are suprasubduction-related. These basins will eventually enter a post-rift sag stage that involves thermal subsidence. However, the basin will still be near an active continental margin, and, thus, some dip- and/or strike-slip faulting may occur coevally, depending on the subduction parameters. Sag cycles in active continental margin basins will likely include volcanism. Basin inversion will after all affect active continental margin basins. Such basins strike parallel to the respective continental margin. Thus, basin inversion by subduction/collision may be more intense than in the case of aulacogens, which do not tend to strike parallel to the continental margin. Basin inversion may also precede a collision due to changing subduction parameters. Subsidence behavior may also differ because many aspects of subsidence may be at work. Subsidence curves in active continental margin basins may be fairly individual. The application of our model only requires settings with the presence of one Pacific margin type." @default.
- W2401888931 created "2016-06-24" @default.
- W2401888931 creator A5007296695 @default.
- W2401888931 creator A5007872715 @default.
- W2401888931 creator A5026350842 @default.
- W2401888931 creator A5039673496 @default.
- W2401888931 creator A5039707508 @default.
- W2401888931 creator A5059228109 @default.
- W2401888931 date "2016-08-01" @default.
- W2401888931 modified "2023-10-16" @default.
- W2401888931 title "Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin" @default.
- W2401888931 cites W1545081465 @default.
- W2401888931 cites W1587780337 @default.
- W2401888931 cites W1683033059 @default.
- W2401888931 cites W1964137908 @default.
- W2401888931 cites W1966297169 @default.
- W2401888931 cites W1967827341 @default.
- W2401888931 cites W1972167093 @default.
- W2401888931 cites W1974485933 @default.
- W2401888931 cites W1974895125 @default.
- W2401888931 cites W1975151862 @default.
- W2401888931 cites W1978868361 @default.
- W2401888931 cites W1981717689 @default.
- W2401888931 cites W1983523676 @default.
- W2401888931 cites W1984962572 @default.
- W2401888931 cites W1988412720 @default.
- W2401888931 cites W1991785796 @default.
- W2401888931 cites W1995015236 @default.
- W2401888931 cites W1995028274 @default.
- W2401888931 cites W1995421237 @default.
- W2401888931 cites W1995897602 @default.
- W2401888931 cites W1997705537 @default.
- W2401888931 cites W2003348019 @default.
- W2401888931 cites W2004501456 @default.
- W2401888931 cites W2006146493 @default.
- W2401888931 cites W2008127132 @default.
- W2401888931 cites W2009148447 @default.
- W2401888931 cites W2011811551 @default.
- W2401888931 cites W2012865218 @default.
- W2401888931 cites W2013138858 @default.
- W2401888931 cites W2021963545 @default.
- W2401888931 cites W2022321344 @default.
- W2401888931 cites W2025652310 @default.
- W2401888931 cites W2027305006 @default.
- W2401888931 cites W2031857259 @default.
- W2401888931 cites W2032764136 @default.
- W2401888931 cites W2034428765 @default.
- W2401888931 cites W2034753142 @default.
- W2401888931 cites W2038677898 @default.
- W2401888931 cites W2039118698 @default.
- W2401888931 cites W2043450579 @default.
- W2401888931 cites W2049826542 @default.
- W2401888931 cites W2049907150 @default.
- W2401888931 cites W2053131121 @default.
- W2401888931 cites W2059968339 @default.
- W2401888931 cites W2060023110 @default.
- W2401888931 cites W2061881259 @default.
- W2401888931 cites W2063249625 @default.
- W2401888931 cites W2063781521 @default.
- W2401888931 cites W2063976160 @default.
- W2401888931 cites W2066182795 @default.
- W2401888931 cites W2068564701 @default.
- W2401888931 cites W2072502494 @default.
- W2401888931 cites W2073157831 @default.
- W2401888931 cites W2073712965 @default.
- W2401888931 cites W2075349472 @default.
- W2401888931 cites W2078177001 @default.
- W2401888931 cites W2079212104 @default.
- W2401888931 cites W2082340284 @default.
- W2401888931 cites W2086498883 @default.
- W2401888931 cites W2088493471 @default.
- W2401888931 cites W2088693914 @default.
- W2401888931 cites W2089021524 @default.
- W2401888931 cites W2091749701 @default.
- W2401888931 cites W2095352961 @default.
- W2401888931 cites W2104821529 @default.
- W2401888931 cites W2111129265 @default.
- W2401888931 cites W2112648202 @default.
- W2401888931 cites W2119534695 @default.
- W2401888931 cites W2131066348 @default.
- W2401888931 cites W2133690176 @default.
- W2401888931 cites W2135565807 @default.
- W2401888931 cites W2145531713 @default.
- W2401888931 cites W2159592773 @default.
- W2401888931 cites W2161972378 @default.
- W2401888931 cites W2162293134 @default.
- W2401888931 cites W2163257312 @default.
- W2401888931 cites W2169534787 @default.
- W2401888931 cites W2170798781 @default.
- W2401888931 cites W2175767871 @default.
- W2401888931 cites W836754863 @default.
- W2401888931 cites W972661611 @default.
- W2401888931 doi "https://doi.org/10.1016/j.earscirev.2016.05.004" @default.
- W2401888931 hasPublicationYear "2016" @default.
- W2401888931 type Work @default.
- W2401888931 sameAs 2401888931 @default.
- W2401888931 citedByCount "154" @default.
- W2401888931 countsByYear W24018889312016 @default.