Matches in SemOpenAlex for { <https://semopenalex.org/work/W2402503558> ?p ?o ?g. }
- W2402503558 abstract "In this paper, we present two variants of the additive Schwarz method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic problems with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. The preconditioner in one variant is symmetric, while in the other variant it is nonsymmetric. The proposed methods are quasi optimal, in the sense that the convergence of the preconditioned GMRES iteration in both cases depend only poly-logarithmically on the ratio of the subdomain size to the mesh size. 1. Introduction. We introduce and analyze two variants of the additive Schwarz method (ASM) for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second-order elliptic partial differential equations with discontinuous coefficients, where the discontinuities may be across subdomain boundaries. Problems of this type play an important role in scientific computing. Discontinuities or jumps in the coefficient cause the performance of any standard iterative method to deteriorate as the jump increases. The resulting system, which is in general nonsymmetric, is solved using the preconditioned generalized minimal residual (or preconditioned GMRES) method. We consider two variants of the ASM preconditioner, i.e., a symmetric and a nonsymmetric variant. The proposed methods are almost optimal in the sense that the convergence of the GMRES iterations in both cases depends only poly-logarithmically on the ratio of the subdomain size to the mesh size. The finite volume method divides the computational domain into a set of control volumes whose centroids typically correspond to the nodal points of a finite difference or a finite element discretization. Unlike the finite difference and the finite element method, the solution from a finite volume discretization ensures conservation of certain quantities such as mass, momentum, energy and species. This property is satisfied exactly for each control volume in the domain as well as the whole of the computational domain, connecting the solution to the physics of the system, and, as a consequence, making the method more attractive. There are two types of finite volume methods: one which is based on the finite difference discretization (also known as the finite volume method), and one which is based on the finite element discretization (also known as the finite volume element (FVE) method). In the later case the approximation of the solution is sought in a finite element space, and therefore it can be considered as a Petrov-Galerkin finite element method. Typically, the finite element space is defined on a mesh, called the primal mesh, and the equations are discretized on a mesh which is dual to the primal mesh. The CRVFE method is a variant of the FVE method, where the solution is sought in the Crouzeix-Raviart (CR) or the P1 nonconforming finite element spaces, as opposed to, say, the" @default.
- W2402503558 created "2016-06-24" @default.
- W2402503558 creator A5012111094 @default.
- W2402503558 creator A5032186919 @default.
- W2402503558 creator A5076007257 @default.
- W2402503558 date "2015-01-01" @default.
- W2402503558 modified "2023-09-27" @default.
- W2402503558 title "EDGE-BASED SCHWARZ METHODS FOR THE CROUZEIX-RAVIART FINITE VOLUME ELEMENT DISCRETIZATION OF ELLIPTIC PROBLEMS ∗" @default.
- W2402503558 cites W1505971862 @default.
- W2402503558 cites W1542243431 @default.
- W2402503558 cites W1548589512 @default.
- W2402503558 cites W1979771104 @default.
- W2402503558 cites W1988570599 @default.
- W2402503558 cites W2019839867 @default.
- W2402503558 cites W2022270612 @default.
- W2402503558 cites W2024949119 @default.
- W2402503558 cites W2030879142 @default.
- W2402503558 cites W2030947573 @default.
- W2402503558 cites W2031249252 @default.
- W2402503558 cites W2041781096 @default.
- W2402503558 cites W2064991465 @default.
- W2402503558 cites W2068395392 @default.
- W2402503558 cites W2070232376 @default.
- W2402503558 cites W2070768902 @default.
- W2402503558 cites W2072816215 @default.
- W2402503558 cites W2140153041 @default.
- W2402503558 cites W2153332458 @default.
- W2402503558 cites W2159148417 @default.
- W2402503558 cites W2185832102 @default.
- W2402503558 cites W230602849 @default.
- W2402503558 cites W2326261353 @default.
- W2402503558 cites W2398367109 @default.
- W2402503558 cites W2741203756 @default.
- W2402503558 cites W654805605 @default.
- W2402503558 hasPublicationYear "2015" @default.
- W2402503558 type Work @default.
- W2402503558 sameAs 2402503558 @default.
- W2402503558 citedByCount "0" @default.
- W2402503558 crossrefType "posted-content" @default.
- W2402503558 hasAuthorship W2402503558A5012111094 @default.
- W2402503558 hasAuthorship W2402503558A5032186919 @default.
- W2402503558 hasAuthorship W2402503558A5076007257 @default.
- W2402503558 hasConcept C121332964 @default.
- W2402503558 hasConcept C126255220 @default.
- W2402503558 hasConcept C127162648 @default.
- W2402503558 hasConcept C134306372 @default.
- W2402503558 hasConcept C135628077 @default.
- W2402503558 hasConcept C155332342 @default.
- W2402503558 hasConcept C15627037 @default.
- W2402503558 hasConcept C159694833 @default.
- W2402503558 hasConcept C167431342 @default.
- W2402503558 hasConcept C174819683 @default.
- W2402503558 hasConcept C198880260 @default.
- W2402503558 hasConcept C28826006 @default.
- W2402503558 hasConcept C31258907 @default.
- W2402503558 hasConcept C31278502 @default.
- W2402503558 hasConcept C33923547 @default.
- W2402503558 hasConcept C41008148 @default.
- W2402503558 hasConcept C50478463 @default.
- W2402503558 hasConcept C57869625 @default.
- W2402503558 hasConcept C57879066 @default.
- W2402503558 hasConcept C73000952 @default.
- W2402503558 hasConcept C97355855 @default.
- W2402503558 hasConceptScore W2402503558C121332964 @default.
- W2402503558 hasConceptScore W2402503558C126255220 @default.
- W2402503558 hasConceptScore W2402503558C127162648 @default.
- W2402503558 hasConceptScore W2402503558C134306372 @default.
- W2402503558 hasConceptScore W2402503558C135628077 @default.
- W2402503558 hasConceptScore W2402503558C155332342 @default.
- W2402503558 hasConceptScore W2402503558C15627037 @default.
- W2402503558 hasConceptScore W2402503558C159694833 @default.
- W2402503558 hasConceptScore W2402503558C167431342 @default.
- W2402503558 hasConceptScore W2402503558C174819683 @default.
- W2402503558 hasConceptScore W2402503558C198880260 @default.
- W2402503558 hasConceptScore W2402503558C28826006 @default.
- W2402503558 hasConceptScore W2402503558C31258907 @default.
- W2402503558 hasConceptScore W2402503558C31278502 @default.
- W2402503558 hasConceptScore W2402503558C33923547 @default.
- W2402503558 hasConceptScore W2402503558C41008148 @default.
- W2402503558 hasConceptScore W2402503558C50478463 @default.
- W2402503558 hasConceptScore W2402503558C57869625 @default.
- W2402503558 hasConceptScore W2402503558C57879066 @default.
- W2402503558 hasConceptScore W2402503558C73000952 @default.
- W2402503558 hasConceptScore W2402503558C97355855 @default.
- W2402503558 hasLocation W24025035581 @default.
- W2402503558 hasOpenAccess W2402503558 @default.
- W2402503558 hasPrimaryLocation W24025035581 @default.
- W2402503558 hasRelatedWork W1029429131 @default.
- W2402503558 hasRelatedWork W130124921 @default.
- W2402503558 hasRelatedWork W1566306810 @default.
- W2402503558 hasRelatedWork W1573215898 @default.
- W2402503558 hasRelatedWork W1973548794 @default.
- W2402503558 hasRelatedWork W1974155734 @default.
- W2402503558 hasRelatedWork W2012524193 @default.
- W2402503558 hasRelatedWork W2023070026 @default.
- W2402503558 hasRelatedWork W2108039194 @default.
- W2402503558 hasRelatedWork W2124862184 @default.
- W2402503558 hasRelatedWork W2296208484 @default.
- W2402503558 hasRelatedWork W2409463377 @default.
- W2402503558 hasRelatedWork W2749306522 @default.