Matches in SemOpenAlex for { <https://semopenalex.org/work/W2402545041> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2402545041 abstract "constructed from poor Weibull estimates will produce biased volume estimates. Thus, general applicability of a procedure Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting does not mean that the procedure is always best, as growthfunction, they can free the modeler from reliance on parametric and-yield modelers are always searching for procedures to approximating functions that may or may not satisfactorily fit the improve d.b.h. distribution estimates. Artificial neural obierved data. T o date there have been few applications in forestry networks (NN) may provide better estimates of d.b.h. science, but as better NN software and fitting algorithms become available, they may be used to solve a wide variety of problemsdistributions that do not rely on assuming an imperfect particularly problems where the underlying relationship between underlying probability model. predicted and predictors is unknown. We benchmark tested an glternative to the traditional Weibull probability distribution function, diameter-at-breast-height moment, and direct parameter prediction models for approximating stand-diameter distributions. Using a feedforward backpropagation network, we demonstrated that NN are a somewhat better option. Unlike Weibull approximations, NN solutions cannot easily be mathematically constrained to match known reality constraints, but this difficulty is easy to overcome in practice." @default.
- W2402545041 created "2016-06-24" @default.
- W2402545041 creator A5044397210 @default.
- W2402545041 creator A5048506417 @default.
- W2402545041 creator A5060128534 @default.
- W2402545041 creator A5086212090 @default.
- W2402545041 date "2001-01-01" @default.
- W2402545041 modified "2023-10-10" @default.
- W2402545041 title "Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies" @default.
- W2402545041 doi "https://doi.org/10.2737/srs-rp-25" @default.
- W2402545041 hasPublicationYear "2001" @default.
- W2402545041 type Work @default.
- W2402545041 sameAs 2402545041 @default.
- W2402545041 citedByCount "19" @default.
- W2402545041 countsByYear W24025450412012 @default.
- W2402545041 countsByYear W24025450412013 @default.
- W2402545041 countsByYear W24025450412014 @default.
- W2402545041 countsByYear W24025450412015 @default.
- W2402545041 countsByYear W24025450412018 @default.
- W2402545041 countsByYear W24025450412020 @default.
- W2402545041 countsByYear W24025450412022 @default.
- W2402545041 countsByYear W24025450412023 @default.
- W2402545041 crossrefType "report" @default.
- W2402545041 hasAuthorship W2402545041A5044397210 @default.
- W2402545041 hasAuthorship W2402545041A5048506417 @default.
- W2402545041 hasAuthorship W2402545041A5060128534 @default.
- W2402545041 hasAuthorship W2402545041A5086212090 @default.
- W2402545041 hasBestOaLocation W24025450411 @default.
- W2402545041 hasConcept C154945302 @default.
- W2402545041 hasConcept C205649164 @default.
- W2402545041 hasConcept C2910048773 @default.
- W2402545041 hasConcept C33923547 @default.
- W2402545041 hasConcept C39432304 @default.
- W2402545041 hasConcept C41008148 @default.
- W2402545041 hasConcept C50644808 @default.
- W2402545041 hasConcept C59822182 @default.
- W2402545041 hasConcept C86803240 @default.
- W2402545041 hasConcept C97137747 @default.
- W2402545041 hasConceptScore W2402545041C154945302 @default.
- W2402545041 hasConceptScore W2402545041C205649164 @default.
- W2402545041 hasConceptScore W2402545041C2910048773 @default.
- W2402545041 hasConceptScore W2402545041C33923547 @default.
- W2402545041 hasConceptScore W2402545041C39432304 @default.
- W2402545041 hasConceptScore W2402545041C41008148 @default.
- W2402545041 hasConceptScore W2402545041C50644808 @default.
- W2402545041 hasConceptScore W2402545041C59822182 @default.
- W2402545041 hasConceptScore W2402545041C86803240 @default.
- W2402545041 hasConceptScore W2402545041C97137747 @default.
- W2402545041 hasLocation W24025450411 @default.
- W2402545041 hasLocation W24025450412 @default.
- W2402545041 hasOpenAccess W2402545041 @default.
- W2402545041 hasPrimaryLocation W24025450411 @default.
- W2402545041 hasRelatedWork W200226109 @default.
- W2402545041 hasRelatedWork W2050915790 @default.
- W2402545041 hasRelatedWork W2165583301 @default.
- W2402545041 hasRelatedWork W2285459904 @default.
- W2402545041 hasRelatedWork W2469127678 @default.
- W2402545041 hasRelatedWork W2492968860 @default.
- W2402545041 hasRelatedWork W2497308888 @default.
- W2402545041 hasRelatedWork W2779791436 @default.
- W2402545041 hasRelatedWork W4318331565 @default.
- W2402545041 hasRelatedWork W1629725936 @default.
- W2402545041 isParatext "false" @default.
- W2402545041 isRetracted "false" @default.
- W2402545041 magId "2402545041" @default.
- W2402545041 workType "report" @default.