Matches in SemOpenAlex for { <https://semopenalex.org/work/W2402861291> ?p ?o ?g. }
- W2402861291 endingPage "e0155706" @default.
- W2402861291 startingPage "e0155706" @default.
- W2402861291 abstract "Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects-some good and some bad-on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes." @default.
- W2402861291 created "2016-06-24" @default.
- W2402861291 creator A5015640756 @default.
- W2402861291 creator A5031614095 @default.
- W2402861291 date "2016-05-17" @default.
- W2402861291 modified "2023-09-23" @default.
- W2402861291 title "Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction" @default.
- W2402861291 cites W1550491892 @default.
- W2402861291 cites W1966302952 @default.
- W2402861291 cites W1966951118 @default.
- W2402861291 cites W1968362113 @default.
- W2402861291 cites W1977234485 @default.
- W2402861291 cites W1995875735 @default.
- W2402861291 cites W2004800990 @default.
- W2402861291 cites W2006681603 @default.
- W2402861291 cites W2016381774 @default.
- W2402861291 cites W2028449379 @default.
- W2402861291 cites W2038179370 @default.
- W2402861291 cites W2040406334 @default.
- W2402861291 cites W2042737139 @default.
- W2402861291 cites W2048984089 @default.
- W2402861291 cites W2049576479 @default.
- W2402861291 cites W2062673790 @default.
- W2402861291 cites W2064604759 @default.
- W2402861291 cites W2072644219 @default.
- W2402861291 cites W2073877809 @default.
- W2402861291 cites W2076618452 @default.
- W2402861291 cites W2077514957 @default.
- W2402861291 cites W2085572291 @default.
- W2402861291 cites W2106114122 @default.
- W2402861291 cites W2106729516 @default.
- W2402861291 cites W2107092366 @default.
- W2402861291 cites W2114741326 @default.
- W2402861291 cites W2115870554 @default.
- W2402861291 cites W2117645142 @default.
- W2402861291 cites W2122528367 @default.
- W2402861291 cites W2125838338 @default.
- W2402861291 cites W2135537007 @default.
- W2402861291 cites W2137163739 @default.
- W2402861291 cites W2138749749 @default.
- W2402861291 cites W2146950091 @default.
- W2402861291 cites W2157840045 @default.
- W2402861291 cites W2158266063 @default.
- W2402861291 cites W2161103159 @default.
- W2402861291 cites W2295821359 @default.
- W2402861291 cites W4230277160 @default.
- W2402861291 cites W4235358731 @default.
- W2402861291 cites W4240501203 @default.
- W2402861291 cites W4376453175 @default.
- W2402861291 cites W982071210 @default.
- W2402861291 cites W2183235533 @default.
- W2402861291 doi "https://doi.org/10.1371/journal.pone.0155706" @default.
- W2402861291 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4871360" @default.
- W2402861291 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27187319" @default.
- W2402861291 hasPublicationYear "2016" @default.
- W2402861291 type Work @default.
- W2402861291 sameAs 2402861291 @default.
- W2402861291 citedByCount "6" @default.
- W2402861291 countsByYear W24028612912017 @default.
- W2402861291 countsByYear W24028612912018 @default.
- W2402861291 countsByYear W24028612912019 @default.
- W2402861291 countsByYear W24028612912021 @default.
- W2402861291 countsByYear W24028612912022 @default.
- W2402861291 crossrefType "journal-article" @default.
- W2402861291 hasAuthorship W2402861291A5015640756 @default.
- W2402861291 hasAuthorship W2402861291A5031614095 @default.
- W2402861291 hasBestOaLocation W24028612911 @default.
- W2402861291 hasConcept C102366305 @default.
- W2402861291 hasConcept C107673813 @default.
- W2402861291 hasConcept C119857082 @default.
- W2402861291 hasConcept C141318989 @default.
- W2402861291 hasConcept C149782125 @default.
- W2402861291 hasConcept C154945302 @default.
- W2402861291 hasConcept C15744967 @default.
- W2402861291 hasConcept C163836022 @default.
- W2402861291 hasConcept C171686336 @default.
- W2402861291 hasConcept C178300618 @default.
- W2402861291 hasConcept C180747234 @default.
- W2402861291 hasConcept C207201462 @default.
- W2402861291 hasConcept C23224414 @default.
- W2402861291 hasConcept C2776035688 @default.
- W2402861291 hasConcept C2781280628 @default.
- W2402861291 hasConcept C33923547 @default.
- W2402861291 hasConcept C41008148 @default.
- W2402861291 hasConcept C46312422 @default.
- W2402861291 hasConcept C49937458 @default.
- W2402861291 hasConcept C500882744 @default.
- W2402861291 hasConcept C78458016 @default.
- W2402861291 hasConcept C86803240 @default.
- W2402861291 hasConcept C98763669 @default.
- W2402861291 hasConceptScore W2402861291C102366305 @default.
- W2402861291 hasConceptScore W2402861291C107673813 @default.
- W2402861291 hasConceptScore W2402861291C119857082 @default.
- W2402861291 hasConceptScore W2402861291C141318989 @default.
- W2402861291 hasConceptScore W2402861291C149782125 @default.
- W2402861291 hasConceptScore W2402861291C154945302 @default.
- W2402861291 hasConceptScore W2402861291C15744967 @default.
- W2402861291 hasConceptScore W2402861291C163836022 @default.