Matches in SemOpenAlex for { <https://semopenalex.org/work/W2402968296> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2402968296 endingPage "1593" @default.
- W2402968296 startingPage "1588" @default.
- W2402968296 abstract "As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance. Given the large databases of OSHA historical events and reports, a manual analysis of the fatality and catastrophe investigations content is a time consuming and expensive process. This paper aims to evaluate the strength of unsupervised machine learning and Natural Language Processing (NLP) in supporting safety inspections and reorganizing accidents database on a state level. After collecting construction accident reports from the OSHA Arizona office, the methodology consists of preprocessing the accident reports and weighting terms in order to apply a data-driven unsupervised K-Means-based clustering approach. The proposed method classifies the collected reports in four clusters, each reporting a type of accident. The results show the construction accidents in the state of Arizona to be caused by falls (42.9%), struck by objects (34.3%), electrocutions (12.5%), and trenches collapse (10.3%). The findings of this research empower state and local agencies with a customized presentation of the accidents fitting their regulations and weather conditions. What is applicable to one climate might not be suitable for another; therefore, such rearrangement of the accidents database on a state based level is a necessary prerequisite to enhance the local safety applications and standards." @default.
- W2402968296 created "2016-06-24" @default.
- W2402968296 creator A5017536941 @default.
- W2402968296 creator A5040571056 @default.
- W2402968296 creator A5063679095 @default.
- W2402968296 creator A5087886082 @default.
- W2402968296 date "2016-01-01" @default.
- W2402968296 modified "2023-10-18" @default.
- W2402968296 title "Analyzing Arizona OSHA Injury Reports Using Unsupervised Machine Learning" @default.
- W2402968296 cites W1975068765 @default.
- W2402968296 cites W1988020212 @default.
- W2402968296 cites W2007417073 @default.
- W2402968296 cites W2045382884 @default.
- W2402968296 cites W2056046205 @default.
- W2402968296 cites W2087710618 @default.
- W2402968296 cites W2100344917 @default.
- W2402968296 cites W2127613848 @default.
- W2402968296 cites W2149184133 @default.
- W2402968296 cites W2207774637 @default.
- W2402968296 cites W2323537218 @default.
- W2402968296 doi "https://doi.org/10.1016/j.proeng.2016.04.200" @default.
- W2402968296 hasPublicationYear "2016" @default.
- W2402968296 type Work @default.
- W2402968296 sameAs 2402968296 @default.
- W2402968296 citedByCount "42" @default.
- W2402968296 countsByYear W24029682962017 @default.
- W2402968296 countsByYear W24029682962019 @default.
- W2402968296 countsByYear W24029682962020 @default.
- W2402968296 countsByYear W24029682962021 @default.
- W2402968296 countsByYear W24029682962022 @default.
- W2402968296 countsByYear W24029682962023 @default.
- W2402968296 crossrefType "journal-article" @default.
- W2402968296 hasAuthorship W2402968296A5017536941 @default.
- W2402968296 hasAuthorship W2402968296A5040571056 @default.
- W2402968296 hasAuthorship W2402968296A5063679095 @default.
- W2402968296 hasAuthorship W2402968296A5087886082 @default.
- W2402968296 hasBestOaLocation W24029682961 @default.
- W2402968296 hasConcept C126838900 @default.
- W2402968296 hasConcept C127413603 @default.
- W2402968296 hasConcept C142724271 @default.
- W2402968296 hasConcept C154945302 @default.
- W2402968296 hasConcept C17744445 @default.
- W2402968296 hasConcept C183115368 @default.
- W2402968296 hasConcept C187155963 @default.
- W2402968296 hasConcept C199360897 @default.
- W2402968296 hasConcept C199539241 @default.
- W2402968296 hasConcept C21547014 @default.
- W2402968296 hasConcept C22212356 @default.
- W2402968296 hasConcept C2781400479 @default.
- W2402968296 hasConcept C38652104 @default.
- W2402968296 hasConcept C41008148 @default.
- W2402968296 hasConcept C55439883 @default.
- W2402968296 hasConcept C71924100 @default.
- W2402968296 hasConcept C73555534 @default.
- W2402968296 hasConcept C77088390 @default.
- W2402968296 hasConcept C77595967 @default.
- W2402968296 hasConcept C8038995 @default.
- W2402968296 hasConceptScore W2402968296C126838900 @default.
- W2402968296 hasConceptScore W2402968296C127413603 @default.
- W2402968296 hasConceptScore W2402968296C142724271 @default.
- W2402968296 hasConceptScore W2402968296C154945302 @default.
- W2402968296 hasConceptScore W2402968296C17744445 @default.
- W2402968296 hasConceptScore W2402968296C183115368 @default.
- W2402968296 hasConceptScore W2402968296C187155963 @default.
- W2402968296 hasConceptScore W2402968296C199360897 @default.
- W2402968296 hasConceptScore W2402968296C199539241 @default.
- W2402968296 hasConceptScore W2402968296C21547014 @default.
- W2402968296 hasConceptScore W2402968296C22212356 @default.
- W2402968296 hasConceptScore W2402968296C2781400479 @default.
- W2402968296 hasConceptScore W2402968296C38652104 @default.
- W2402968296 hasConceptScore W2402968296C41008148 @default.
- W2402968296 hasConceptScore W2402968296C55439883 @default.
- W2402968296 hasConceptScore W2402968296C71924100 @default.
- W2402968296 hasConceptScore W2402968296C73555534 @default.
- W2402968296 hasConceptScore W2402968296C77088390 @default.
- W2402968296 hasConceptScore W2402968296C77595967 @default.
- W2402968296 hasConceptScore W2402968296C8038995 @default.
- W2402968296 hasLocation W24029682961 @default.
- W2402968296 hasLocation W24029682962 @default.
- W2402968296 hasOpenAccess W2402968296 @default.
- W2402968296 hasPrimaryLocation W24029682961 @default.
- W2402968296 hasRelatedWork W108742494 @default.
- W2402968296 hasRelatedWork W1517743118 @default.
- W2402968296 hasRelatedWork W2024218563 @default.
- W2402968296 hasRelatedWork W2072806201 @default.
- W2402968296 hasRelatedWork W2281090687 @default.
- W2402968296 hasRelatedWork W2899084033 @default.
- W2402968296 hasRelatedWork W2949707069 @default.
- W2402968296 hasRelatedWork W2965845133 @default.
- W2402968296 hasRelatedWork W1602178951 @default.
- W2402968296 hasRelatedWork W1670831115 @default.
- W2402968296 hasVolume "145" @default.
- W2402968296 isParatext "false" @default.
- W2402968296 isRetracted "false" @default.
- W2402968296 magId "2402968296" @default.
- W2402968296 workType "article" @default.