Matches in SemOpenAlex for { <https://semopenalex.org/work/W2403093670> ?p ?o ?g. }
- W2403093670 abstract "The purpose of this research was to evaluate the applicability of the Volterra adaptive method to predict the target echo of an ultrasonic signal in an underwater seafloor mining environment. There is growing interest in mining of seafloor minerals because they offer an alternative source of rare metals. Mining the minerals cause the seafloor sediments to be stirred up and suspended in sea water. In such an environment, the target signals used for seafloor mapping are unable to be detected because of the unavoidable presence of volume reverberation induced by the suspended sediments. The detection of target signals in reverberation is currently performed using a stochastic model (for example, the autoregressive (AR) model) based on the statistical characterisation of reverberation. However, we examined a new method of signal detection in volume reverberation based on the Volterra series by confirming that the reverberation is a chaotic signal and generated by a deterministic process. The advantage of this method over the stochastic model is that attributions of the specific physical process are considered in the signal detection problem. To test the Volterra series based method and its applicability to target signal detection in the volume reverberation environment derived from the seafloor mining process, we simulated the real-life conditions of seafloor mining in a water filled tank of dimensions of 5×3×1.8m. The bottom of the tank was covered with 10cm of an irregular sand layer under which 5cm of an irregular cobalt-rich crusts layer was placed. The bottom was interrogated by an acoustic wave generated as 16μs pulses of 500kHz frequency. This frequency is demonstrated to ensure a resolution on the order of one centimetre, which is adequate in exploration practice. Echo signals were collected with a data acquisition card (PCI 1714 UL, 12-bit). Detection of the target echo in these signals was performed by both the Volterra series based model and the AR model. The results obtained confirm that the Volterra series based method is more efficient in the detection of the signal in reverberation than the conventional AR model (the accuracy is 80% for the PIM-Volterra prediction model versus 40% for the AR model)." @default.
- W2403093670 created "2016-06-24" @default.
- W2403093670 creator A5030699864 @default.
- W2403093670 creator A5054517227 @default.
- W2403093670 creator A5059302634 @default.
- W2403093670 creator A5061498444 @default.
- W2403093670 creator A5080751811 @default.
- W2403093670 date "2016-09-01" @default.
- W2403093670 modified "2023-09-24" @default.
- W2403093670 title "A Volterra series-based method for extracting target echoes in the seafloor mining environment" @default.
- W2403093670 cites W1490466178 @default.
- W2403093670 cites W1615672776 @default.
- W2403093670 cites W1985362009 @default.
- W2403093670 cites W2010461070 @default.
- W2403093670 cites W2029401646 @default.
- W2403093670 cites W2035611376 @default.
- W2403093670 cites W2042596103 @default.
- W2403093670 cites W2046013469 @default.
- W2403093670 cites W2051267938 @default.
- W2403093670 cites W2054720932 @default.
- W2403093670 cites W2055905698 @default.
- W2403093670 cites W2102037022 @default.
- W2403093670 cites W2124428761 @default.
- W2403093670 cites W2134383471 @default.
- W2403093670 cites W2145232064 @default.
- W2403093670 cites W2146203966 @default.
- W2403093670 cites W2148156471 @default.
- W2403093670 cites W2152254020 @default.
- W2403093670 cites W2156926111 @default.
- W2403093670 cites W2377897698 @default.
- W2403093670 cites W2380037486 @default.
- W2403093670 cites W2384366658 @default.
- W2403093670 cites W2393034277 @default.
- W2403093670 doi "https://doi.org/10.1016/j.ultras.2016.05.019" @default.
- W2403093670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27262353" @default.
- W2403093670 hasPublicationYear "2016" @default.
- W2403093670 type Work @default.
- W2403093670 sameAs 2403093670 @default.
- W2403093670 citedByCount "3" @default.
- W2403093670 countsByYear W24030936702018 @default.
- W2403093670 countsByYear W24030936702020 @default.
- W2403093670 countsByYear W24030936702021 @default.
- W2403093670 crossrefType "journal-article" @default.
- W2403093670 hasAuthorship W2403093670A5030699864 @default.
- W2403093670 hasAuthorship W2403093670A5054517227 @default.
- W2403093670 hasAuthorship W2403093670A5059302634 @default.
- W2403093670 hasAuthorship W2403093670A5061498444 @default.
- W2403093670 hasAuthorship W2403093670A5080751811 @default.
- W2403093670 hasConcept C105795698 @default.
- W2403093670 hasConcept C111368507 @default.
- W2403093670 hasConcept C117485682 @default.
- W2403093670 hasConcept C121332964 @default.
- W2403093670 hasConcept C127313418 @default.
- W2403093670 hasConcept C158622935 @default.
- W2403093670 hasConcept C159877910 @default.
- W2403093670 hasConcept C199360897 @default.
- W2403093670 hasConcept C20556612 @default.
- W2403093670 hasConcept C24890656 @default.
- W2403093670 hasConcept C2778532037 @default.
- W2403093670 hasConcept C2779843651 @default.
- W2403093670 hasConcept C33613203 @default.
- W2403093670 hasConcept C33923547 @default.
- W2403093670 hasConcept C41008148 @default.
- W2403093670 hasConcept C62520636 @default.
- W2403093670 hasConcept C8058405 @default.
- W2403093670 hasConcept C95851461 @default.
- W2403093670 hasConcept C98083399 @default.
- W2403093670 hasConceptScore W2403093670C105795698 @default.
- W2403093670 hasConceptScore W2403093670C111368507 @default.
- W2403093670 hasConceptScore W2403093670C117485682 @default.
- W2403093670 hasConceptScore W2403093670C121332964 @default.
- W2403093670 hasConceptScore W2403093670C127313418 @default.
- W2403093670 hasConceptScore W2403093670C158622935 @default.
- W2403093670 hasConceptScore W2403093670C159877910 @default.
- W2403093670 hasConceptScore W2403093670C199360897 @default.
- W2403093670 hasConceptScore W2403093670C20556612 @default.
- W2403093670 hasConceptScore W2403093670C24890656 @default.
- W2403093670 hasConceptScore W2403093670C2778532037 @default.
- W2403093670 hasConceptScore W2403093670C2779843651 @default.
- W2403093670 hasConceptScore W2403093670C33613203 @default.
- W2403093670 hasConceptScore W2403093670C33923547 @default.
- W2403093670 hasConceptScore W2403093670C41008148 @default.
- W2403093670 hasConceptScore W2403093670C62520636 @default.
- W2403093670 hasConceptScore W2403093670C8058405 @default.
- W2403093670 hasConceptScore W2403093670C95851461 @default.
- W2403093670 hasConceptScore W2403093670C98083399 @default.
- W2403093670 hasFunder F4320321001 @default.
- W2403093670 hasLocation W24030936701 @default.
- W2403093670 hasLocation W24030936702 @default.
- W2403093670 hasOpenAccess W2403093670 @default.
- W2403093670 hasPrimaryLocation W24030936701 @default.
- W2403093670 hasRelatedWork W1995501139 @default.
- W2403093670 hasRelatedWork W2298407722 @default.
- W2403093670 hasRelatedWork W2379855867 @default.
- W2403093670 hasRelatedWork W2403093670 @default.
- W2403093670 hasRelatedWork W2724544128 @default.
- W2403093670 hasRelatedWork W2768703168 @default.
- W2403093670 hasRelatedWork W2897324672 @default.
- W2403093670 hasRelatedWork W2994774635 @default.
- W2403093670 hasRelatedWork W4252100436 @default.