Matches in SemOpenAlex for { <https://semopenalex.org/work/W2403323309> ?p ?o ?g. }
- W2403323309 abstract "Multiple computational tools have been widely applied to the detection of coding driver mutations in cancer; however, the prioritization of pathogenic non-coding variants remains a difficult and demanding task. The present study was performed to distinguish non-coding disease-causing mutations from neutral ones, and to prioritize potential cancer-associated long non-coding RNAs (lncRNAs) with a logistic regression model in lung cancer. A logistic regression model was constructed, combining 19,153 disease-associated ClinVar and Human Gene Mutation Database pathogenic variants as the response variable and non-coding features as the predictor variable. Validation of the model was conducted with genome-wide association study (GWAS) disease- or trait-associated single nucleotide polymorphisms (SNPs) and recurrent somatic mutations. High scoring regions were characterized with respect to their distribution in various features and gene classes; potential cancer-associated lncRNA candidates were prioritized, combining the fraction of high-scoring regions and average score predicted by the logistic regression model. H3K79me2 was the most negative factor that contributed to the model, while conserved regions were most positively informative to the model. The area under the receiver operating characteristic curve of the model was 0.89. The model assigned a significantly higher score to GWAS SNPs and recurrent somatic mutations compared with neutral SNPs (mean, 5.9012 vs. 5.5238; P<0.001, Mann-Whitney U test) and non-recurrent mutations (mean, 5.4677 vs. 5.2277, P<0.001, Mann-Whitney U test), respectively. It was observed that regions, including splicing sites and untranslated regions, and gene classes, including cancer genes and cancer-associated lncRNAs, had an increased enrichment of high-scoring regions. In total, 2,679 cancer-associated lncRNAs were determined and characterized. A total of 104 of these lncRNAs were differentially expressed between lung cancer and normal specimens. The logistic regression model is a useful and efficient scoring system to prioritize non-coding pathogenic variants and lncRNAs, and may provide the basis for detecting non-coding driver lncRNAs in lung cancer." @default.
- W2403323309 created "2016-06-24" @default.
- W2403323309 creator A5022399191 @default.
- W2403323309 creator A5024897978 @default.
- W2403323309 date "2016-05-18" @default.
- W2403323309 modified "2023-09-28" @default.
- W2403323309 title "Functional annotation of noncoding variants and prioritization of cancer-associated lncRNAs in lung cancer" @default.
- W2403323309 cites W1493359429 @default.
- W2403323309 cites W1976149758 @default.
- W2403323309 cites W1989456683 @default.
- W2403323309 cites W1989773675 @default.
- W2403323309 cites W1996781954 @default.
- W2403323309 cites W2000609514 @default.
- W2403323309 cites W2013958859 @default.
- W2403323309 cites W2016302314 @default.
- W2403323309 cites W2018189081 @default.
- W2403323309 cites W2023568503 @default.
- W2403323309 cites W2025323279 @default.
- W2403323309 cites W2030209169 @default.
- W2403323309 cites W2033184210 @default.
- W2403323309 cites W2039816251 @default.
- W2403323309 cites W2051075975 @default.
- W2403323309 cites W2052042727 @default.
- W2403323309 cites W2052931181 @default.
- W2403323309 cites W2059145105 @default.
- W2403323309 cites W2066843562 @default.
- W2403323309 cites W2075810753 @default.
- W2403323309 cites W2084160423 @default.
- W2403323309 cites W2088544963 @default.
- W2403323309 cites W2096465161 @default.
- W2403323309 cites W2096791516 @default.
- W2403323309 cites W2100305481 @default.
- W2403323309 cites W2102619694 @default.
- W2403323309 cites W2104500293 @default.
- W2403323309 cites W2107903949 @default.
- W2403323309 cites W2117396697 @default.
- W2403323309 cites W2117902111 @default.
- W2403323309 cites W2119043602 @default.
- W2403323309 cites W2122133689 @default.
- W2403323309 cites W2123411711 @default.
- W2403323309 cites W2134033103 @default.
- W2403323309 cites W2137886330 @default.
- W2403323309 cites W2141820415 @default.
- W2403323309 cites W2145191876 @default.
- W2403323309 cites W2146573461 @default.
- W2403323309 cites W2147287621 @default.
- W2403323309 cites W2149082178 @default.
- W2403323309 cites W2152061559 @default.
- W2403323309 cites W2154866190 @default.
- W2403323309 cites W2158116492 @default.
- W2403323309 cites W2159018721 @default.
- W2403323309 cites W2159636319 @default.
- W2403323309 cites W2160333540 @default.
- W2403323309 cites W2160995259 @default.
- W2403323309 cites W2161978970 @default.
- W2403323309 cites W2163775594 @default.
- W2403323309 cites W2166251028 @default.
- W2403323309 cites W2167852161 @default.
- W2403323309 cites W2168817344 @default.
- W2403323309 cites W2169456326 @default.
- W2403323309 cites W2169601480 @default.
- W2403323309 cites W2179438025 @default.
- W2403323309 cites W2259938310 @default.
- W2403323309 cites W2558692177 @default.
- W2403323309 doi "https://doi.org/10.3892/ol.2016.4604" @default.
- W2403323309 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4906798" @default.
- W2403323309 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27347129" @default.
- W2403323309 hasPublicationYear "2016" @default.
- W2403323309 type Work @default.
- W2403323309 sameAs 2403323309 @default.
- W2403323309 citedByCount "8" @default.
- W2403323309 countsByYear W24033233092016 @default.
- W2403323309 countsByYear W24033233092017 @default.
- W2403323309 countsByYear W24033233092018 @default.
- W2403323309 countsByYear W24033233092019 @default.
- W2403323309 crossrefType "journal-article" @default.
- W2403323309 hasAuthorship W2403323309A5022399191 @default.
- W2403323309 hasAuthorship W2403323309A5024897978 @default.
- W2403323309 hasBestOaLocation W24033233091 @default.
- W2403323309 hasConcept C104317684 @default.
- W2403323309 hasConcept C106208931 @default.
- W2403323309 hasConcept C121608353 @default.
- W2403323309 hasConcept C126322002 @default.
- W2403323309 hasConcept C135763542 @default.
- W2403323309 hasConcept C143998085 @default.
- W2403323309 hasConcept C151956035 @default.
- W2403323309 hasConcept C153209595 @default.
- W2403323309 hasConcept C2776256026 @default.
- W2403323309 hasConcept C54355233 @default.
- W2403323309 hasConcept C58471807 @default.
- W2403323309 hasConcept C70721500 @default.
- W2403323309 hasConcept C71924100 @default.
- W2403323309 hasConcept C86803240 @default.
- W2403323309 hasConceptScore W2403323309C104317684 @default.
- W2403323309 hasConceptScore W2403323309C106208931 @default.
- W2403323309 hasConceptScore W2403323309C121608353 @default.
- W2403323309 hasConceptScore W2403323309C126322002 @default.
- W2403323309 hasConceptScore W2403323309C135763542 @default.
- W2403323309 hasConceptScore W2403323309C143998085 @default.
- W2403323309 hasConceptScore W2403323309C151956035 @default.