Matches in SemOpenAlex for { <https://semopenalex.org/work/W2403419001> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2403419001 endingPage "78" @default.
- W2403419001 startingPage "72" @default.
- W2403419001 abstract "Abstract The use of computer based learning models in medical domain has become a significant area of research. Organ transplantation is one of the main areas where prognosis models are being used for predicting the survival of patients. Post transplantation mortality rate is reduced if there exists an intelligent system that can pick out the correct donor-recipients pairs from a pool of donor and recipient data. In this paper, we propose a survival prediction model to define three month mortality of patients after Liver Transplantation. We used an Artificial Neural Network model for the survival rate of Liver Transplantation. The data for the study was gathered from United Network for Organ Sharing transplant registry. The main objective of the study is to develop a model for short-term survival prediction of liver patients. With 10-fold cross validation we were divided the whole data into training and test data which gives an accuracy of 99.74% by Multilayer Perceptron Artificial Neural Network model. We also compared the model with other classification models using various error performance measures. To ensure accuracy we experimented our model with existing models and proved the result." @default.
- W2403419001 created "2016-06-24" @default.
- W2403419001 creator A5024223802 @default.
- W2403419001 creator A5082768190 @default.
- W2403419001 date "2016-09-01" @default.
- W2403419001 modified "2023-09-29" @default.
- W2403419001 title "Graft survival prediction in liver transplantation using artificial neural network models" @default.
- W2403419001 cites W1973389764 @default.
- W2403419001 cites W1981976602 @default.
- W2403419001 cites W1996904669 @default.
- W2403419001 cites W2041126249 @default.
- W2403419001 cites W2068613509 @default.
- W2403419001 cites W2069243984 @default.
- W2403419001 cites W2082632440 @default.
- W2403419001 cites W2084394145 @default.
- W2403419001 cites W2094868861 @default.
- W2403419001 cites W2095254476 @default.
- W2403419001 cites W2121704243 @default.
- W2403419001 cites W2137455218 @default.
- W2403419001 cites W2144108054 @default.
- W2403419001 cites W2144926427 @default.
- W2403419001 cites W2152541790 @default.
- W2403419001 cites W2163048132 @default.
- W2403419001 cites W2323202746 @default.
- W2403419001 cites W4233842984 @default.
- W2403419001 doi "https://doi.org/10.1016/j.jocs.2016.05.005" @default.
- W2403419001 hasPublicationYear "2016" @default.
- W2403419001 type Work @default.
- W2403419001 sameAs 2403419001 @default.
- W2403419001 citedByCount "37" @default.
- W2403419001 countsByYear W24034190012016 @default.
- W2403419001 countsByYear W24034190012017 @default.
- W2403419001 countsByYear W24034190012018 @default.
- W2403419001 countsByYear W24034190012019 @default.
- W2403419001 countsByYear W24034190012020 @default.
- W2403419001 countsByYear W24034190012021 @default.
- W2403419001 countsByYear W24034190012022 @default.
- W2403419001 countsByYear W24034190012023 @default.
- W2403419001 crossrefType "journal-article" @default.
- W2403419001 hasAuthorship W2403419001A5024223802 @default.
- W2403419001 hasAuthorship W2403419001A5082768190 @default.
- W2403419001 hasConcept C126322002 @default.
- W2403419001 hasConcept C154945302 @default.
- W2403419001 hasConcept C2779609443 @default.
- W2403419001 hasConcept C2911091166 @default.
- W2403419001 hasConcept C41008148 @default.
- W2403419001 hasConcept C50644808 @default.
- W2403419001 hasConcept C71924100 @default.
- W2403419001 hasConceptScore W2403419001C126322002 @default.
- W2403419001 hasConceptScore W2403419001C154945302 @default.
- W2403419001 hasConceptScore W2403419001C2779609443 @default.
- W2403419001 hasConceptScore W2403419001C2911091166 @default.
- W2403419001 hasConceptScore W2403419001C41008148 @default.
- W2403419001 hasConceptScore W2403419001C50644808 @default.
- W2403419001 hasConceptScore W2403419001C71924100 @default.
- W2403419001 hasLocation W24034190011 @default.
- W2403419001 hasOpenAccess W2403419001 @default.
- W2403419001 hasPrimaryLocation W24034190011 @default.
- W2403419001 hasRelatedWork W1505956785 @default.
- W2403419001 hasRelatedWork W1524745592 @default.
- W2403419001 hasRelatedWork W2009016048 @default.
- W2403419001 hasRelatedWork W2028772693 @default.
- W2403419001 hasRelatedWork W2076863566 @default.
- W2403419001 hasRelatedWork W2386387936 @default.
- W2403419001 hasRelatedWork W2809601010 @default.
- W2403419001 hasRelatedWork W3029240783 @default.
- W2403419001 hasRelatedWork W1629725936 @default.
- W2403419001 hasRelatedWork W2484789333 @default.
- W2403419001 hasVolume "16" @default.
- W2403419001 isParatext "false" @default.
- W2403419001 isRetracted "false" @default.
- W2403419001 magId "2403419001" @default.
- W2403419001 workType "article" @default.