Matches in SemOpenAlex for { <https://semopenalex.org/work/W2403615912> ?p ?o ?g. }
- W2403615912 endingPage "860" @default.
- W2403615912 startingPage "849" @default.
- W2403615912 abstract "Analytical ultracentrifugation–sedimentation velocity (AUC-SV) is often used to quantify high molar mass species (HMMS) present in biopharmaceuticals. Although these species are often present in trace quantities, they have received significant attention due to their potential immunogenicity. Commonly, AUC-SV data is analyzed as a diffusion-corrected, sedimentation coefficient distribution, or c(s), using SEDFIT to numerically solve Lamm-type equations. SEDFIT also utilizes maximum entropy or Tikhonov-Phillips regularization to further allow the user to determine relevant sample information, including the number of species present, their sedimentation coefficients, and their relative abundance. However, this methodology has several, often unstated, limitations, which may impact the final analysis of protein therapeutics. These include regularization-specific effects, artificial “ripple peaks,” and spurious shifts in the sedimentation coefficients. In this investigation, we experimentally verified that an explicit Bayesian approach, as implemented in SEDFIT, can largely correct for these effects. Clear guidelines on how to implement this technique and interpret the resulting data, especially for samples containing micro-heterogeneity (e.g., differential glycosylation), are also provided. In addition, we demonstrated how the Bayesian approach can be combined with F statistics to draw more accurate conclusions and rigorously exclude artifactual peaks. Numerous examples with an antibody and an antibody-drug conjugate were used to illustrate the strengths and drawbacks of each technique." @default.
- W2403615912 created "2016-06-24" @default.
- W2403615912 creator A5015328650 @default.
- W2403615912 creator A5016803200 @default.
- W2403615912 creator A5086604086 @default.
- W2403615912 date "2016-05-16" @default.
- W2403615912 modified "2023-09-30" @default.
- W2403615912 title "Quantifying Trace Amounts of Aggregates in Biopharmaceuticals Using Analytical Ultracentrifugation Sedimentation Velocity: Bayesian Analyses and F Statistics" @default.
- W2403615912 cites W1565197201 @default.
- W2403615912 cites W1975317507 @default.
- W2403615912 cites W1975639729 @default.
- W2403615912 cites W1976542430 @default.
- W2403615912 cites W1980442616 @default.
- W2403615912 cites W1981489327 @default.
- W2403615912 cites W1985440252 @default.
- W2403615912 cites W1988645461 @default.
- W2403615912 cites W1990596938 @default.
- W2403615912 cites W1994649103 @default.
- W2403615912 cites W1999746361 @default.
- W2403615912 cites W2004185397 @default.
- W2403615912 cites W2007228224 @default.
- W2403615912 cites W2015060415 @default.
- W2403615912 cites W2029095216 @default.
- W2403615912 cites W2029174947 @default.
- W2403615912 cites W2032660941 @default.
- W2403615912 cites W2047565601 @default.
- W2403615912 cites W2047628386 @default.
- W2403615912 cites W2052288218 @default.
- W2403615912 cites W2055400338 @default.
- W2403615912 cites W2061187228 @default.
- W2403615912 cites W2071095038 @default.
- W2403615912 cites W2079666345 @default.
- W2403615912 cites W2087103327 @default.
- W2403615912 cites W2096787196 @default.
- W2403615912 cites W2106907072 @default.
- W2403615912 cites W2134615061 @default.
- W2403615912 cites W2152190063 @default.
- W2403615912 cites W2159804371 @default.
- W2403615912 cites W2167777181 @default.
- W2403615912 cites W2318372411 @default.
- W2403615912 cites W2610380068 @default.
- W2403615912 cites W2914125634 @default.
- W2403615912 cites W4238520503 @default.
- W2403615912 doi "https://doi.org/10.1208/s12248-016-9925-y" @default.
- W2403615912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27184576" @default.
- W2403615912 hasPublicationYear "2016" @default.
- W2403615912 type Work @default.
- W2403615912 sameAs 2403615912 @default.
- W2403615912 citedByCount "12" @default.
- W2403615912 countsByYear W24036159122017 @default.
- W2403615912 countsByYear W24036159122018 @default.
- W2403615912 countsByYear W24036159122019 @default.
- W2403615912 countsByYear W24036159122020 @default.
- W2403615912 countsByYear W24036159122022 @default.
- W2403615912 countsByYear W24036159122023 @default.
- W2403615912 crossrefType "journal-article" @default.
- W2403615912 hasAuthorship W2403615912A5015328650 @default.
- W2403615912 hasAuthorship W2403615912A5016803200 @default.
- W2403615912 hasAuthorship W2403615912A5086604086 @default.
- W2403615912 hasBestOaLocation W24036159121 @default.
- W2403615912 hasConcept C105795698 @default.
- W2403615912 hasConcept C107673813 @default.
- W2403615912 hasConcept C121332964 @default.
- W2403615912 hasConcept C121864883 @default.
- W2403615912 hasConcept C134306372 @default.
- W2403615912 hasConcept C135252773 @default.
- W2403615912 hasConcept C152442038 @default.
- W2403615912 hasConcept C171752962 @default.
- W2403615912 hasConcept C177769412 @default.
- W2403615912 hasConcept C185592680 @default.
- W2403615912 hasConcept C186060115 @default.
- W2403615912 hasConcept C28826006 @default.
- W2403615912 hasConcept C2910425616 @default.
- W2403615912 hasConcept C33923547 @default.
- W2403615912 hasConcept C43617362 @default.
- W2403615912 hasConcept C54689828 @default.
- W2403615912 hasConcept C86803240 @default.
- W2403615912 hasConcept C97256817 @default.
- W2403615912 hasConceptScore W2403615912C105795698 @default.
- W2403615912 hasConceptScore W2403615912C107673813 @default.
- W2403615912 hasConceptScore W2403615912C121332964 @default.
- W2403615912 hasConceptScore W2403615912C121864883 @default.
- W2403615912 hasConceptScore W2403615912C134306372 @default.
- W2403615912 hasConceptScore W2403615912C135252773 @default.
- W2403615912 hasConceptScore W2403615912C152442038 @default.
- W2403615912 hasConceptScore W2403615912C171752962 @default.
- W2403615912 hasConceptScore W2403615912C177769412 @default.
- W2403615912 hasConceptScore W2403615912C185592680 @default.
- W2403615912 hasConceptScore W2403615912C186060115 @default.
- W2403615912 hasConceptScore W2403615912C28826006 @default.
- W2403615912 hasConceptScore W2403615912C2910425616 @default.
- W2403615912 hasConceptScore W2403615912C33923547 @default.
- W2403615912 hasConceptScore W2403615912C43617362 @default.
- W2403615912 hasConceptScore W2403615912C54689828 @default.
- W2403615912 hasConceptScore W2403615912C86803240 @default.
- W2403615912 hasConceptScore W2403615912C97256817 @default.
- W2403615912 hasIssue "4" @default.
- W2403615912 hasLocation W24036159121 @default.