Matches in SemOpenAlex for { <https://semopenalex.org/work/W2403743911> ?p ?o ?g. }
- W2403743911 endingPage "487" @default.
- W2403743911 startingPage "476" @default.
- W2403743911 abstract "Recently, graph-based semi-supervised learning (SSL) becomes a hot topic in machine learning and pattern recognition. It has been shown that constructing an informative graph is one of the most important steps in SSL since a good graph can significantly affect the final performance of learning algorithms. This paper has the following main contributions. First, we introduce a new graph construction method based on data self-representativeness and Laplacian smoothness (SRLS). Second, this method is refined by incorporating an adaptive coding scheme aiming at getting a sparse graph. Third, we propose two kernelized versions of the SRLS method. A series of experiments on several public image data sets show that the proposed methods can out-perform many state-of-the-art methods. It is shown that Laplacian smoothness criterion is indeed a powerful tool to get informative graphs." @default.
- W2403743911 created "2016-06-24" @default.
- W2403743911 creator A5056621437 @default.
- W2403743911 creator A5081042741 @default.
- W2403743911 creator A5083362297 @default.
- W2403743911 date "2016-09-01" @default.
- W2403743911 modified "2023-10-16" @default.
- W2403743911 title "Graph construction based on data self-representativeness and Laplacian smoothness" @default.
- W2403743911 cites W1572027582 @default.
- W2403743911 cites W1904464160 @default.
- W2403743911 cites W1971756996 @default.
- W2403743911 cites W1981080484 @default.
- W2403743911 cites W1989243451 @default.
- W2403743911 cites W2003684104 @default.
- W2403743911 cites W2017214807 @default.
- W2403743911 cites W2017248058 @default.
- W2403743911 cites W2020400084 @default.
- W2403743911 cites W2027922120 @default.
- W2403743911 cites W2029450386 @default.
- W2403743911 cites W2030754587 @default.
- W2403743911 cites W2041449151 @default.
- W2403743911 cites W2049466529 @default.
- W2403743911 cites W2052575990 @default.
- W2403743911 cites W2053186076 @default.
- W2403743911 cites W2055588122 @default.
- W2403743911 cites W2070127246 @default.
- W2403743911 cites W2077733625 @default.
- W2403743911 cites W2081128548 @default.
- W2403743911 cites W2094533840 @default.
- W2403743911 cites W2097308346 @default.
- W2403743911 cites W2113590298 @default.
- W2403743911 cites W2115394986 @default.
- W2403743911 cites W2118123809 @default.
- W2403743911 cites W2129812935 @default.
- W2403743911 cites W2133442079 @default.
- W2403743911 cites W2141923507 @default.
- W2403743911 cites W2152814537 @default.
- W2403743911 cites W2156637418 @default.
- W2403743911 cites W2165922980 @default.
- W2403743911 cites W2167665791 @default.
- W2403743911 cites W38891395 @default.
- W2403743911 cites W72529729 @default.
- W2403743911 cites W886543236 @default.
- W2403743911 cites W97949734 @default.
- W2403743911 doi "https://doi.org/10.1016/j.neucom.2016.05.021" @default.
- W2403743911 hasPublicationYear "2016" @default.
- W2403743911 type Work @default.
- W2403743911 sameAs 2403743911 @default.
- W2403743911 citedByCount "9" @default.
- W2403743911 countsByYear W24037439112017 @default.
- W2403743911 countsByYear W24037439112018 @default.
- W2403743911 countsByYear W24037439112019 @default.
- W2403743911 countsByYear W24037439112020 @default.
- W2403743911 countsByYear W24037439112021 @default.
- W2403743911 countsByYear W24037439112022 @default.
- W2403743911 crossrefType "journal-article" @default.
- W2403743911 hasAuthorship W2403743911A5056621437 @default.
- W2403743911 hasAuthorship W2403743911A5081042741 @default.
- W2403743911 hasAuthorship W2403743911A5083362297 @default.
- W2403743911 hasConcept C105795698 @default.
- W2403743911 hasConcept C11413529 @default.
- W2403743911 hasConcept C115178988 @default.
- W2403743911 hasConcept C119857082 @default.
- W2403743911 hasConcept C124101348 @default.
- W2403743911 hasConcept C132525143 @default.
- W2403743911 hasConcept C153180895 @default.
- W2403743911 hasConcept C154945302 @default.
- W2403743911 hasConcept C33923547 @default.
- W2403743911 hasConcept C37381756 @default.
- W2403743911 hasConcept C41008148 @default.
- W2403743911 hasConcept C80444323 @default.
- W2403743911 hasConceptScore W2403743911C105795698 @default.
- W2403743911 hasConceptScore W2403743911C11413529 @default.
- W2403743911 hasConceptScore W2403743911C115178988 @default.
- W2403743911 hasConceptScore W2403743911C119857082 @default.
- W2403743911 hasConceptScore W2403743911C124101348 @default.
- W2403743911 hasConceptScore W2403743911C132525143 @default.
- W2403743911 hasConceptScore W2403743911C153180895 @default.
- W2403743911 hasConceptScore W2403743911C154945302 @default.
- W2403743911 hasConceptScore W2403743911C33923547 @default.
- W2403743911 hasConceptScore W2403743911C37381756 @default.
- W2403743911 hasConceptScore W2403743911C41008148 @default.
- W2403743911 hasConceptScore W2403743911C80444323 @default.
- W2403743911 hasFunder F4320321001 @default.
- W2403743911 hasFunder F4320335777 @default.
- W2403743911 hasLocation W24037439111 @default.
- W2403743911 hasOpenAccess W2403743911 @default.
- W2403743911 hasPrimaryLocation W24037439111 @default.
- W2403743911 hasRelatedWork W2403743911 @default.
- W2403743911 hasRelatedWork W2961085424 @default.
- W2403743911 hasRelatedWork W2982149258 @default.
- W2403743911 hasRelatedWork W3046775127 @default.
- W2403743911 hasRelatedWork W4285260836 @default.
- W2403743911 hasRelatedWork W4286629047 @default.
- W2403743911 hasRelatedWork W4288089511 @default.
- W2403743911 hasRelatedWork W4306321456 @default.
- W2403743911 hasRelatedWork W4306674287 @default.
- W2403743911 hasRelatedWork W4224009465 @default.