Matches in SemOpenAlex for { <https://semopenalex.org/work/W2404089202> ?p ?o ?g. }
- W2404089202 abstract "Social Networks are Encoded in Language Sterling Hutchinson (schtchns@memphis.edu) Department of Psychology / Institute for Intelligent Systems, University of Memphis 365 Innovation Drive, Memphis, TN 38152 USA Vivek Datla (vvdatla@memphis.edu) Department of Computer Science / Institute for Intelligent Systems, University of Memphis 365 Innovation Drive, Memphis, TN 38152 USA Max M. Louwerse (mlouwerse@memphis.edu) Department of Psychology / Institute for Intelligent Systems, University of Memphis 365 Innovation Drive, Memphis, TN 38152 USA Abstract and exchanges. The formal, sentimental, and interactive nature of the social relationship can be determined by assessing a number of factors. For example, relationships can be predicted in part by the kinship of the individuals. In families, siblings tend to be close friends. Gender especially impacts the nature of relationships such that if a member of the dyad is a female, the relationship is more likely to be successful (Kim, McHale, & Osgood, 2006; Wright & Scanlon, 1991). Environment tends to weigh heavily in terms of whether or not two individuals are likely to build a relationship together. Proximity has also long been established as a strong predictor for relationships of all varieties, with increased proximity leading to increased likelihood of interpersonal relationships (Ebbesen, Kjos, Konecni, 1976). In addition, ties between locations (e.g., commonly trekked routes) also impact social interaction (Takhteyev, Gruzd, & Wellman, 2011). Similarly, familiarity fosters attraction between individuals (Reis, Manianci, Caprariello, Eastwick, & Finkel, 2011; Zajonc, 1968; 2001). Further, those who share interests, attitudes, and characteristics are more likely to develop friendships. In fact, any similarity between two individuals promotes the formation of a relationship between them (Bryne, 1971), with important matters (e.g., religious views, political attitudes) given more weight (Touhey, 1972). Emotions also impact relationships. When two individuals first encounter one another, a future friendship becomes more likely if the interaction is positive, whereas a friendship is not apt to blossom if the interaction is negative (Farina, Wheeler, & Mehta, 1991). Even physical features, like smell or appearance influence the relationships we form (Li, Moallem, Paller, & Gottfried, 2007). After social relations are formed, different factors help these relations to solidify. For instance, Berscheid, Snyder, and Omoto (1989) found that closeness was significantly related to satisfaction of established romantic relationships, as was self-disclosure (Sprecher & Henrick, 2004). Feeney and Noller (1992) argued that individual differences like attachment styles impact the duration of social relationships, as does equity (Hatfield, Traupmann, & Walster, 1978). In addition, when it comes to group relationships, predicting Knowledge regarding social information is thought to be derived from many different sources, such as interviews and formal relationships. Social networks can likewise be generated from such external information. Recent work has demonstrated that statistical linguistic data can explain findings thought to be explained by external factors alone, such as perceptual relations. The current study explored whether language implicitly comprises information that allows for extracting social networks, by testing the hypothesis that individuals who are socially related together are linguistically talked about together, as well as the hypothesis that individuals who are socially related more are talked about more. In the first analysis using first-order co- occurrences of names of characters in the Harry Potter novels we found that an MDS solution correlated with the actual social network of characters as rated by humans. In a second study using higher-order co-occurrences, a latent semantic analysis (LSA) space was trained on all seven Harry Potter novels. LSA cosine values for all character pairs were obtained, marking their semantic similarity. Again, an MDS analysis comparing the LSA data with the actual social relationships yielded a significant bidimensional regression. These results demonstrate that linguistic information indeed encodes social relationship information and show that implicit information within language can generate social networks. Keywords: social relations; social networks; social cognition; statistical linguistic frequencies Introduction What is the nature of social relations and how can such relations be estimated? Social media, such as Facebook, LinkedIn, and Twitter allow us to answer this question, based on individuals choosing their friends. However, when such deliberate decisions are not readily available, how can social relations be measured and social networks be plotted otherwise? Social relations can be interpreted in three non-mutually exclusive ways (Fischer, 1982). First, they can be formal in socially recognized roles, such as teacher/student, employer/employee, or father/son. Second, they can be sentimental, as when individuals feel close to others. Finally, a relation can be defined in terms of interactions" @default.
- W2404089202 created "2016-06-24" @default.
- W2404089202 creator A5029522343 @default.
- W2404089202 creator A5065112237 @default.
- W2404089202 creator A5068150504 @default.
- W2404089202 date "2012-01-01" @default.
- W2404089202 modified "2023-09-26" @default.
- W2404089202 title "Social Networks are Encoded in Language" @default.
- W2404089202 cites W1664311846 @default.
- W2404089202 cites W1732828232 @default.
- W2404089202 cites W1971788485 @default.
- W2404089202 cites W1989513516 @default.
- W2404089202 cites W1997065173 @default.
- W2404089202 cites W2001601153 @default.
- W2404089202 cites W2005567981 @default.
- W2404089202 cites W2015209454 @default.
- W2404089202 cites W2021882084 @default.
- W2404089202 cites W2034493626 @default.
- W2404089202 cites W2047546378 @default.
- W2404089202 cites W2064765903 @default.
- W2404089202 cites W2075220185 @default.
- W2404089202 cites W2077088370 @default.
- W2404089202 cites W2079961945 @default.
- W2404089202 cites W2096648510 @default.
- W2404089202 cites W2096763800 @default.
- W2404089202 cites W2111023939 @default.
- W2404089202 cites W2114589588 @default.
- W2404089202 cites W2131829566 @default.
- W2404089202 cites W2132782894 @default.
- W2404089202 cites W2147279990 @default.
- W2404089202 cites W2148606196 @default.
- W2404089202 cites W2154406326 @default.
- W2404089202 cites W2166689112 @default.
- W2404089202 cites W2396109572 @default.
- W2404089202 cites W2403634660 @default.
- W2404089202 cites W2606327620 @default.
- W2404089202 cites W3011963386 @default.
- W2404089202 cites W620335631 @default.
- W2404089202 cites W99716116 @default.
- W2404089202 cites W2143046471 @default.
- W2404089202 hasPublicationYear "2012" @default.
- W2404089202 type Work @default.
- W2404089202 sameAs 2404089202 @default.
- W2404089202 citedByCount "7" @default.
- W2404089202 countsByYear W24040892022012 @default.
- W2404089202 countsByYear W24040892022013 @default.
- W2404089202 countsByYear W24040892022016 @default.
- W2404089202 countsByYear W24040892022021 @default.
- W2404089202 crossrefType "journal-article" @default.
- W2404089202 hasAuthorship W2404089202A5029522343 @default.
- W2404089202 hasAuthorship W2404089202A5065112237 @default.
- W2404089202 hasAuthorship W2404089202A5068150504 @default.
- W2404089202 hasConcept C103278499 @default.
- W2404089202 hasConcept C115961682 @default.
- W2404089202 hasConcept C144024400 @default.
- W2404089202 hasConcept C144348335 @default.
- W2404089202 hasConcept C154945302 @default.
- W2404089202 hasConcept C15744967 @default.
- W2404089202 hasConcept C164850336 @default.
- W2404089202 hasConcept C19165224 @default.
- W2404089202 hasConcept C199360897 @default.
- W2404089202 hasConcept C2777667586 @default.
- W2404089202 hasConcept C2777716012 @default.
- W2404089202 hasConcept C2778987988 @default.
- W2404089202 hasConcept C2987946170 @default.
- W2404089202 hasConcept C41008148 @default.
- W2404089202 hasConcept C59822182 @default.
- W2404089202 hasConcept C77805123 @default.
- W2404089202 hasConcept C86803240 @default.
- W2404089202 hasConceptScore W2404089202C103278499 @default.
- W2404089202 hasConceptScore W2404089202C115961682 @default.
- W2404089202 hasConceptScore W2404089202C144024400 @default.
- W2404089202 hasConceptScore W2404089202C144348335 @default.
- W2404089202 hasConceptScore W2404089202C154945302 @default.
- W2404089202 hasConceptScore W2404089202C15744967 @default.
- W2404089202 hasConceptScore W2404089202C164850336 @default.
- W2404089202 hasConceptScore W2404089202C19165224 @default.
- W2404089202 hasConceptScore W2404089202C199360897 @default.
- W2404089202 hasConceptScore W2404089202C2777667586 @default.
- W2404089202 hasConceptScore W2404089202C2777716012 @default.
- W2404089202 hasConceptScore W2404089202C2778987988 @default.
- W2404089202 hasConceptScore W2404089202C2987946170 @default.
- W2404089202 hasConceptScore W2404089202C41008148 @default.
- W2404089202 hasConceptScore W2404089202C59822182 @default.
- W2404089202 hasConceptScore W2404089202C77805123 @default.
- W2404089202 hasConceptScore W2404089202C86803240 @default.
- W2404089202 hasIssue "34" @default.
- W2404089202 hasLocation W24040892021 @default.
- W2404089202 hasOpenAccess W2404089202 @default.
- W2404089202 hasPrimaryLocation W24040892021 @default.
- W2404089202 hasRelatedWork W136138861 @default.
- W2404089202 hasRelatedWork W1584649334 @default.
- W2404089202 hasRelatedWork W165605549 @default.
- W2404089202 hasRelatedWork W1965479602 @default.
- W2404089202 hasRelatedWork W1970542510 @default.
- W2404089202 hasRelatedWork W1989513516 @default.
- W2404089202 hasRelatedWork W2008881603 @default.
- W2404089202 hasRelatedWork W2023714801 @default.
- W2404089202 hasRelatedWork W2091031944 @default.
- W2404089202 hasRelatedWork W2111238303 @default.