Matches in SemOpenAlex for { <https://semopenalex.org/work/W2404179621> ?p ?o ?g. }
- W2404179621 endingPage "2989" @default.
- W2404179621 startingPage "2975" @default.
- W2404179621 abstract "Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound‐guided high‐intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient's body. Therefore, the segmentation becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region‐based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region‐based split‐and‐merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel‐based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first‐order and second‐order texture features computed from the gray levels and the gray level co‐occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori information about the tumor position, shape, and size. Additionally, an appropriate cluster number for spectral clustering can be determined by the same algorithm, thus the automatic segmentation of the tumor region is achieved. Results: To evaluate the performance of the proposed method, 50 uterine fibroid ultrasound images from different patients receiving HIFU therapy were segmented, and the obtained tumor contours were compared with those delineated by an experienced radiologist. For area‐based evaluation results, the mean values of the true positive ratio, the false positive ratio, and the similarity were 94.42%, 4.71%, and 90.21%, respectively, and the corresponding standard deviations were 2.54%, 3.12%, and 3.50%, respectively. For distance‐based evaluation results, the mean values of the normalized Hausdorff distance and the normalized mean absolute distance were 4.93% and 0.90%, respectively, and the corresponding standard deviations were 2.22% and 0.34%, respectively. The running time of the segmentation process was 12.9 s for a 318 × 333 (pixels) image. Conclusions: Experiments show that the proposed method can segment the tumor region accurately and efficiently with less manual intervention, which provides for the possibility of automatic segmentation and real‐time guidance in HIFU therapy." @default.
- W2404179621 created "2016-06-24" @default.
- W2404179621 creator A5001852275 @default.
- W2404179621 creator A5004089970 @default.
- W2404179621 creator A5029093505 @default.
- W2404179621 creator A5062298925 @default.
- W2404179621 creator A5068951317 @default.
- W2404179621 creator A5085046602 @default.
- W2404179621 date "2016-05-19" @default.
- W2404179621 modified "2023-10-16" @default.
- W2404179621 title "A region-based segmentation method for ultrasound images in HIFU therapy" @default.
- W2404179621 cites W1966047305 @default.
- W2404179621 cites W1988819287 @default.
- W2404179621 cites W1990379362 @default.
- W2404179621 cites W1999478155 @default.
- W2404179621 cites W2005797502 @default.
- W2404179621 cites W2007149632 @default.
- W2404179621 cites W2043589278 @default.
- W2404179621 cites W2044465660 @default.
- W2404179621 cites W2046560222 @default.
- W2404179621 cites W2062080136 @default.
- W2404179621 cites W2067191022 @default.
- W2404179621 cites W2068075086 @default.
- W2404179621 cites W2070252766 @default.
- W2404179621 cites W2074620982 @default.
- W2404179621 cites W2076923578 @default.
- W2404179621 cites W2085250783 @default.
- W2404179621 cites W2085279201 @default.
- W2404179621 cites W2090875249 @default.
- W2404179621 cites W2104095591 @default.
- W2404179621 cites W2104377141 @default.
- W2404179621 cites W2113142816 @default.
- W2404179621 cites W2116040950 @default.
- W2404179621 cites W2118246710 @default.
- W2404179621 cites W2119249988 @default.
- W2404179621 cites W2121326143 @default.
- W2404179621 cites W2121947440 @default.
- W2404179621 cites W2122264932 @default.
- W2404179621 cites W2124260943 @default.
- W2404179621 cites W2126212606 @default.
- W2404179621 cites W2141376824 @default.
- W2404179621 cites W2143581454 @default.
- W2404179621 cites W2150134853 @default.
- W2404179621 cites W2150338488 @default.
- W2404179621 cites W2160496016 @default.
- W2404179621 cites W2170770739 @default.
- W2404179621 cites W1987111048 @default.
- W2404179621 cites W783453938 @default.
- W2404179621 doi "https://doi.org/10.1118/1.4950706" @default.
- W2404179621 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27277046" @default.
- W2404179621 hasPublicationYear "2016" @default.
- W2404179621 type Work @default.
- W2404179621 sameAs 2404179621 @default.
- W2404179621 citedByCount "13" @default.
- W2404179621 countsByYear W24041796212017 @default.
- W2404179621 countsByYear W24041796212018 @default.
- W2404179621 countsByYear W24041796212019 @default.
- W2404179621 countsByYear W24041796212020 @default.
- W2404179621 countsByYear W24041796212021 @default.
- W2404179621 countsByYear W24041796212022 @default.
- W2404179621 countsByYear W24041796212023 @default.
- W2404179621 crossrefType "journal-article" @default.
- W2404179621 hasAuthorship W2404179621A5001852275 @default.
- W2404179621 hasAuthorship W2404179621A5004089970 @default.
- W2404179621 hasAuthorship W2404179621A5029093505 @default.
- W2404179621 hasAuthorship W2404179621A5062298925 @default.
- W2404179621 hasAuthorship W2404179621A5068951317 @default.
- W2404179621 hasAuthorship W2404179621A5085046602 @default.
- W2404179621 hasConcept C102290492 @default.
- W2404179621 hasConcept C124504099 @default.
- W2404179621 hasConcept C126838900 @default.
- W2404179621 hasConcept C143753070 @default.
- W2404179621 hasConcept C153180895 @default.
- W2404179621 hasConcept C154945302 @default.
- W2404179621 hasConcept C2777365067 @default.
- W2404179621 hasConcept C31972630 @default.
- W2404179621 hasConcept C41008148 @default.
- W2404179621 hasConcept C71924100 @default.
- W2404179621 hasConcept C73555534 @default.
- W2404179621 hasConcept C89600930 @default.
- W2404179621 hasConceptScore W2404179621C102290492 @default.
- W2404179621 hasConceptScore W2404179621C124504099 @default.
- W2404179621 hasConceptScore W2404179621C126838900 @default.
- W2404179621 hasConceptScore W2404179621C143753070 @default.
- W2404179621 hasConceptScore W2404179621C153180895 @default.
- W2404179621 hasConceptScore W2404179621C154945302 @default.
- W2404179621 hasConceptScore W2404179621C2777365067 @default.
- W2404179621 hasConceptScore W2404179621C31972630 @default.
- W2404179621 hasConceptScore W2404179621C41008148 @default.
- W2404179621 hasConceptScore W2404179621C71924100 @default.
- W2404179621 hasConceptScore W2404179621C73555534 @default.
- W2404179621 hasConceptScore W2404179621C89600930 @default.
- W2404179621 hasIssue "6Part1" @default.
- W2404179621 hasLocation W24041796211 @default.
- W2404179621 hasLocation W24041796212 @default.
- W2404179621 hasOpenAccess W2404179621 @default.
- W2404179621 hasPrimaryLocation W24041796211 @default.
- W2404179621 hasRelatedWork W1522196789 @default.