Matches in SemOpenAlex for { <https://semopenalex.org/work/W2404427863> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2404427863 endingPage "2970" @default.
- W2404427863 startingPage "2963" @default.
- W2404427863 abstract "Deep Spiking Neural Networks are becoming increasingly powerful tools for cognitive computing platforms. However, most of the existing literature on such computing models are developed with limited insights on the underlying hardware implementation, resulting in area and power expensive designs. Although several neuromimetic devices emulating neural operations have been proposed recently, their functionality has been limited to very simple neural models that may prove to be inefficient at complex recognition tasks. In this work, we venture into the relatively unexplored area of utilizing the inherent device stochasticity of such neuromimetic devices to model complex neural functionalities in a probabilistic framework in the time domain. We consider the implementation of a Deep Spiking Neural Network capable of performing high accuracy and low latency classification tasks where the neural computing unit is enabled by the stochastic switching behavior of a Magnetic Tunnel Junction. Simulation studies indicate an energy improvement of $20times$ over a baseline CMOS design in $45nm$ technology." @default.
- W2404427863 created "2016-06-24" @default.
- W2404427863 creator A5031161187 @default.
- W2404427863 creator A5032635465 @default.
- W2404427863 creator A5044384604 @default.
- W2404427863 creator A5078825022 @default.
- W2404427863 date "2016-07-01" @default.
- W2404427863 modified "2023-10-06" @default.
- W2404427863 title "Probabilistic Deep Spiking Neural Systems Enabled by Magnetic Tunnel Junction" @default.
- W2404427863 cites W1505400302 @default.
- W2404427863 cites W1570411240 @default.
- W2404427863 cites W1645800954 @default.
- W2404427863 cites W1965304117 @default.
- W2404427863 cites W2009295681 @default.
- W2404427863 cites W2011901356 @default.
- W2404427863 cites W2014744284 @default.
- W2404427863 cites W2016922062 @default.
- W2404427863 cites W2039375332 @default.
- W2404427863 cites W2063927304 @default.
- W2404427863 cites W2071947829 @default.
- W2404427863 cites W2072790036 @default.
- W2404427863 cites W2077586448 @default.
- W2404427863 cites W2096199318 @default.
- W2404427863 cites W2112796928 @default.
- W2404427863 cites W2138913040 @default.
- W2404427863 cites W2151810376 @default.
- W2404427863 cites W2317230785 @default.
- W2404427863 cites W2334364695 @default.
- W2404427863 cites W3100511017 @default.
- W2404427863 cites W3102217464 @default.
- W2404427863 cites W3102264470 @default.
- W2404427863 cites W3105284836 @default.
- W2404427863 doi "https://doi.org/10.1109/ted.2016.2568762" @default.
- W2404427863 hasPublicationYear "2016" @default.
- W2404427863 type Work @default.
- W2404427863 sameAs 2404427863 @default.
- W2404427863 citedByCount "82" @default.
- W2404427863 countsByYear W24044278632017 @default.
- W2404427863 countsByYear W24044278632018 @default.
- W2404427863 countsByYear W24044278632019 @default.
- W2404427863 countsByYear W24044278632020 @default.
- W2404427863 countsByYear W24044278632021 @default.
- W2404427863 countsByYear W24044278632022 @default.
- W2404427863 countsByYear W24044278632023 @default.
- W2404427863 crossrefType "journal-article" @default.
- W2404427863 hasAuthorship W2404427863A5031161187 @default.
- W2404427863 hasAuthorship W2404427863A5032635465 @default.
- W2404427863 hasAuthorship W2404427863A5044384604 @default.
- W2404427863 hasAuthorship W2404427863A5078825022 @default.
- W2404427863 hasBestOaLocation W24044278631 @default.
- W2404427863 hasConcept C108583219 @default.
- W2404427863 hasConcept C11731999 @default.
- W2404427863 hasConcept C118524514 @default.
- W2404427863 hasConcept C121332964 @default.
- W2404427863 hasConcept C151927369 @default.
- W2404427863 hasConcept C154945302 @default.
- W2404427863 hasConcept C2780971903 @default.
- W2404427863 hasConcept C41008148 @default.
- W2404427863 hasConcept C49937458 @default.
- W2404427863 hasConcept C50644808 @default.
- W2404427863 hasConcept C56202322 @default.
- W2404427863 hasConcept C62520636 @default.
- W2404427863 hasConcept C82217956 @default.
- W2404427863 hasConceptScore W2404427863C108583219 @default.
- W2404427863 hasConceptScore W2404427863C11731999 @default.
- W2404427863 hasConceptScore W2404427863C118524514 @default.
- W2404427863 hasConceptScore W2404427863C121332964 @default.
- W2404427863 hasConceptScore W2404427863C151927369 @default.
- W2404427863 hasConceptScore W2404427863C154945302 @default.
- W2404427863 hasConceptScore W2404427863C2780971903 @default.
- W2404427863 hasConceptScore W2404427863C41008148 @default.
- W2404427863 hasConceptScore W2404427863C49937458 @default.
- W2404427863 hasConceptScore W2404427863C50644808 @default.
- W2404427863 hasConceptScore W2404427863C56202322 @default.
- W2404427863 hasConceptScore W2404427863C62520636 @default.
- W2404427863 hasConceptScore W2404427863C82217956 @default.
- W2404427863 hasIssue "7" @default.
- W2404427863 hasLocation W24044278631 @default.
- W2404427863 hasLocation W24044278632 @default.
- W2404427863 hasOpenAccess W2404427863 @default.
- W2404427863 hasPrimaryLocation W24044278631 @default.
- W2404427863 hasRelatedWork W2584693479 @default.
- W2404427863 hasRelatedWork W2986579802 @default.
- W2404427863 hasRelatedWork W3006958873 @default.
- W2404427863 hasRelatedWork W3012119183 @default.
- W2404427863 hasRelatedWork W3031505884 @default.
- W2404427863 hasRelatedWork W3214713078 @default.
- W2404427863 hasRelatedWork W4287864703 @default.
- W2404427863 hasRelatedWork W4306160827 @default.
- W2404427863 hasRelatedWork W4313484726 @default.
- W2404427863 hasRelatedWork W4386227293 @default.
- W2404427863 hasVolume "63" @default.
- W2404427863 isParatext "false" @default.
- W2404427863 isRetracted "false" @default.
- W2404427863 magId "2404427863" @default.
- W2404427863 workType "article" @default.