Matches in SemOpenAlex for { <https://semopenalex.org/work/W2404467465> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2404467465 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2014 SIAM International Conference on Data Mining (SDM)Factor Matrix Trace Norm Minimization for Low-Rank Tensor CompletionYuanyuan Liu, Fanhua Shang, Hong Cheng, James Cheng, and Hanghang TongYuanyuan LiuDepartment of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Department of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Computer Science Department, City College, The City University of New York.Search for more papers by this author, Fanhua ShangDepartment of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Department of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Computer Science Department, City College, The City University of New York.Search for more papers by this author, Hong ChengDepartment of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Department of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Computer Science Department, City College, The City University of New York.Search for more papers by this author, James ChengDepartment of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Department of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Computer Science Department, City College, The City University of New York.Search for more papers by this author, and Hanghang TongDepartment of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Department of Systems Engineering and Engineering Management, The Chinese University of Hong KongDepartment of Computer Science and Engineering, The Chinese University of Hong Kong.Computer Science Department, City College, The City University of New York.Search for more papers by this authorpp.866 - 874Chapter DOI:https://doi.org/10.1137/1.9781611973440.99PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix trace norm minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank minimization model by deducing the relation between the rank of each factor matrix and the mode-n rank of a tensor. Then, we introduce a tractable relaxation of our rank function, which leads to a convex combination problem of much smaller scale matrix nuclear norm minimization. Finally, we develop an efficient alternating direction method of multipliers (ADMM) scheme to solve the proposed problem. Experimental results on both synthetic and real-world data validate the effectiveness of our approach. Moreover, our method is significantly faster than the state-of-the-art approaches and scales well to handle large datasets. Previous chapter Next chapter RelatedDetails Published:2014eISBN:978-1-61197-344-0 https://doi.org/10.1137/1.9781611973440Book Series Name:ProceedingsBook Code:PRDT14Book Pages:1-1086" @default.
- W2404467465 created "2016-06-24" @default.
- W2404467465 creator A5016082884 @default.
- W2404467465 creator A5054464310 @default.
- W2404467465 creator A5067858777 @default.
- W2404467465 creator A5068043486 @default.
- W2404467465 creator A5085614235 @default.
- W2404467465 date "2014-04-28" @default.
- W2404467465 modified "2023-10-11" @default.
- W2404467465 title "Factor Matrix Trace Norm Minimization for Low-Rank Tensor Completion" @default.
- W2404467465 cites W1615057313 @default.
- W2404467465 cites W1736339626 @default.
- W2404467465 cites W187632787 @default.
- W2404467465 cites W1963826206 @default.
- W2404467465 cites W1982524534 @default.
- W2404467465 cites W1994219736 @default.
- W2404467465 cites W2007822845 @default.
- W2404467465 cites W2013912476 @default.
- W2404467465 cites W2024165284 @default.
- W2404467465 cites W2024166170 @default.
- W2404467465 cites W2024182011 @default.
- W2404467465 cites W2030628896 @default.
- W2404467465 cites W2033560557 @default.
- W2404467465 cites W2049588365 @default.
- W2404467465 cites W2060204507 @default.
- W2404467465 cites W2068548513 @default.
- W2404467465 cites W2078677240 @default.
- W2404467465 cites W2079705627 @default.
- W2404467465 cites W2089088255 @default.
- W2404467465 cites W2091449379 @default.
- W2404467465 cites W2095711515 @default.
- W2404467465 cites W2103972604 @default.
- W2404467465 cites W2118550318 @default.
- W2404467465 cites W2119511382 @default.
- W2404467465 cites W2121739212 @default.
- W2404467465 cites W2129131372 @default.
- W2404467465 cites W2164278908 @default.
- W2404467465 cites W2611328865 @default.
- W2404467465 cites W2740905535 @default.
- W2404467465 doi "https://doi.org/10.1137/1.9781611973440.99" @default.
- W2404467465 hasPublicationYear "2014" @default.
- W2404467465 type Work @default.
- W2404467465 sameAs 2404467465 @default.
- W2404467465 citedByCount "35" @default.
- W2404467465 countsByYear W24044674652014 @default.
- W2404467465 countsByYear W24044674652015 @default.
- W2404467465 countsByYear W24044674652016 @default.
- W2404467465 countsByYear W24044674652017 @default.
- W2404467465 countsByYear W24044674652018 @default.
- W2404467465 countsByYear W24044674652019 @default.
- W2404467465 countsByYear W24044674652020 @default.
- W2404467465 countsByYear W24044674652021 @default.
- W2404467465 countsByYear W24044674652022 @default.
- W2404467465 countsByYear W24044674652023 @default.
- W2404467465 crossrefType "proceedings-article" @default.
- W2404467465 hasAuthorship W2404467465A5016082884 @default.
- W2404467465 hasAuthorship W2404467465A5054464310 @default.
- W2404467465 hasAuthorship W2404467465A5067858777 @default.
- W2404467465 hasAuthorship W2404467465A5068043486 @default.
- W2404467465 hasAuthorship W2404467465A5085614235 @default.
- W2404467465 hasBestOaLocation W24044674652 @default.
- W2404467465 hasConcept C110354214 @default.
- W2404467465 hasConcept C115903868 @default.
- W2404467465 hasConcept C127413603 @default.
- W2404467465 hasConcept C17744445 @default.
- W2404467465 hasConcept C191795146 @default.
- W2404467465 hasConcept C199539241 @default.
- W2404467465 hasConcept C2781195118 @default.
- W2404467465 hasConcept C2993955422 @default.
- W2404467465 hasConcept C41008148 @default.
- W2404467465 hasConcept C55587333 @default.
- W2404467465 hasConceptScore W2404467465C110354214 @default.
- W2404467465 hasConceptScore W2404467465C115903868 @default.
- W2404467465 hasConceptScore W2404467465C127413603 @default.
- W2404467465 hasConceptScore W2404467465C17744445 @default.
- W2404467465 hasConceptScore W2404467465C191795146 @default.
- W2404467465 hasConceptScore W2404467465C199539241 @default.
- W2404467465 hasConceptScore W2404467465C2781195118 @default.
- W2404467465 hasConceptScore W2404467465C2993955422 @default.
- W2404467465 hasConceptScore W2404467465C41008148 @default.
- W2404467465 hasConceptScore W2404467465C55587333 @default.
- W2404467465 hasLocation W24044674651 @default.
- W2404467465 hasLocation W24044674652 @default.
- W2404467465 hasOpenAccess W2404467465 @default.
- W2404467465 hasPrimaryLocation W24044674651 @default.
- W2404467465 hasRelatedWork W2010394689 @default.
- W2404467465 hasRelatedWork W2037297113 @default.
- W2404467465 hasRelatedWork W2351372840 @default.
- W2404467465 hasRelatedWork W2353273444 @default.
- W2404467465 hasRelatedWork W2374890775 @default.
- W2404467465 hasRelatedWork W2380978829 @default.
- W2404467465 hasRelatedWork W2748952813 @default.
- W2404467465 hasRelatedWork W2899084033 @default.
- W2404467465 hasRelatedWork W3159695635 @default.
- W2404467465 hasRelatedWork W4287185700 @default.
- W2404467465 isParatext "false" @default.
- W2404467465 isRetracted "false" @default.
- W2404467465 magId "2404467465" @default.
- W2404467465 workType "article" @default.