Matches in SemOpenAlex for { <https://semopenalex.org/work/W2405778879> ?p ?o ?g. }
- W2405778879 endingPage "941" @default.
- W2405778879 startingPage "932" @default.
- W2405778879 abstract "Many machine learning and signal processing tasks involve computing sparse representations using an overcomplete set of features or basis vectors, with compressive sensing-based applications a notable example. While traditionally such problems have been solved individually for different tasks, this strategy ignores strong correlations that may be present in real world data. Consequently there has been a push to exploit these statistical dependencies by jointly solving a series of sparse linear inverse problems. In the majority of the resulting algorithms however, we must a priori decide which tasks can most judiciously be grouped together. In contrast, this paper proposes an integrated Bayesian framework for both clustering tasks together and subsequently learning optimally sparse representations within each cluster. While probabilistic models have been applied previously to solve these types of problems, they typically involve a complex hierarchical Bayesian generative model merged with some type of approximate inference, the combination of which renders rigorous analysis of the underlying behavior virtually impossible. On the other hand, our model subscribes to concrete motivating principles that we carefully evaluate both theoretically and empirically. Importantly, our analyses take into account all approximations that are involved in arriving at the actual cost function to be optimized. Results on synthetic data as well as image recovery from compressive measurements show improved performance over existing methods." @default.
- W2405778879 created "2016-06-24" @default.
- W2405778879 creator A5010193173 @default.
- W2405778879 creator A5017541508 @default.
- W2405778879 creator A5079594267 @default.
- W2405778879 creator A5079659442 @default.
- W2405778879 creator A5085016531 @default.
- W2405778879 date "2015-07-12" @default.
- W2405778879 modified "2023-09-29" @default.
- W2405778879 title "Clustered sparse Bayesian learning" @default.
- W2405778879 cites W1648445109 @default.
- W2405778879 cites W1774526428 @default.
- W2405778879 cites W1848264314 @default.
- W2405778879 cites W1990718447 @default.
- W2405778879 cites W1993962865 @default.
- W2405778879 cites W2038614136 @default.
- W2405778879 cites W2045875109 @default.
- W2405778879 cites W2055382430 @default.
- W2405778879 cites W2098711149 @default.
- W2405778879 cites W2100243645 @default.
- W2405778879 cites W2127498532 @default.
- W2405778879 cites W2127870457 @default.
- W2405778879 cites W2146000945 @default.
- W2405778879 cites W2147656689 @default.
- W2405778879 cites W2154332973 @default.
- W2405778879 cites W2161765392 @default.
- W2405778879 cites W2163386439 @default.
- W2405778879 cites W2170844819 @default.
- W2405778879 cites W2296319761 @default.
- W2405778879 cites W2401696734 @default.
- W2405778879 cites W2511885285 @default.
- W2405778879 cites W2950559108 @default.
- W2405778879 cites W2145856765 @default.
- W2405778879 doi "https://doi.org/10.17863/cam.26590" @default.
- W2405778879 hasPublicationYear "2015" @default.
- W2405778879 type Work @default.
- W2405778879 sameAs 2405778879 @default.
- W2405778879 citedByCount "3" @default.
- W2405778879 countsByYear W24057788792015 @default.
- W2405778879 countsByYear W24057788792021 @default.
- W2405778879 countsByYear W24057788792022 @default.
- W2405778879 crossrefType "proceedings-article" @default.
- W2405778879 hasAuthorship W2405778879A5010193173 @default.
- W2405778879 hasAuthorship W2405778879A5017541508 @default.
- W2405778879 hasAuthorship W2405778879A5079594267 @default.
- W2405778879 hasAuthorship W2405778879A5079659442 @default.
- W2405778879 hasAuthorship W2405778879A5085016531 @default.
- W2405778879 hasConcept C107673813 @default.
- W2405778879 hasConcept C111472728 @default.
- W2405778879 hasConcept C119857082 @default.
- W2405778879 hasConcept C124851039 @default.
- W2405778879 hasConcept C138885662 @default.
- W2405778879 hasConcept C154945302 @default.
- W2405778879 hasConcept C160234255 @default.
- W2405778879 hasConcept C167966045 @default.
- W2405778879 hasConcept C177264268 @default.
- W2405778879 hasConcept C199360897 @default.
- W2405778879 hasConcept C2776214188 @default.
- W2405778879 hasConcept C39890363 @default.
- W2405778879 hasConcept C41008148 @default.
- W2405778879 hasConcept C49937458 @default.
- W2405778879 hasConcept C73555534 @default.
- W2405778879 hasConcept C75553542 @default.
- W2405778879 hasConceptScore W2405778879C107673813 @default.
- W2405778879 hasConceptScore W2405778879C111472728 @default.
- W2405778879 hasConceptScore W2405778879C119857082 @default.
- W2405778879 hasConceptScore W2405778879C124851039 @default.
- W2405778879 hasConceptScore W2405778879C138885662 @default.
- W2405778879 hasConceptScore W2405778879C154945302 @default.
- W2405778879 hasConceptScore W2405778879C160234255 @default.
- W2405778879 hasConceptScore W2405778879C167966045 @default.
- W2405778879 hasConceptScore W2405778879C177264268 @default.
- W2405778879 hasConceptScore W2405778879C199360897 @default.
- W2405778879 hasConceptScore W2405778879C2776214188 @default.
- W2405778879 hasConceptScore W2405778879C39890363 @default.
- W2405778879 hasConceptScore W2405778879C41008148 @default.
- W2405778879 hasConceptScore W2405778879C49937458 @default.
- W2405778879 hasConceptScore W2405778879C73555534 @default.
- W2405778879 hasConceptScore W2405778879C75553542 @default.
- W2405778879 hasLocation W24057788791 @default.
- W2405778879 hasOpenAccess W2405778879 @default.
- W2405778879 hasPrimaryLocation W24057788791 @default.
- W2405778879 hasRelatedWork W1520137306 @default.
- W2405778879 hasRelatedWork W1554288356 @default.
- W2405778879 hasRelatedWork W1884762066 @default.
- W2405778879 hasRelatedWork W194341024 @default.
- W2405778879 hasRelatedWork W2167809057 @default.
- W2405778879 hasRelatedWork W2225862952 @default.
- W2405778879 hasRelatedWork W2599969863 @default.
- W2405778879 hasRelatedWork W2741243237 @default.
- W2405778879 hasRelatedWork W2770992186 @default.
- W2405778879 hasRelatedWork W2888180323 @default.
- W2405778879 hasRelatedWork W2913573237 @default.
- W2405778879 hasRelatedWork W2948421839 @default.
- W2405778879 hasRelatedWork W2950515451 @default.
- W2405778879 hasRelatedWork W2951006247 @default.
- W2405778879 hasRelatedWork W2979915069 @default.
- W2405778879 hasRelatedWork W2980725178 @default.